【机器学习】F1-score那些事

众所周知,F1-score是通过混淆矩阵算出来的
image-20230902095411905
在这里插入图片描述
在这里插入图片描述
TP代表预测正类,预测正确,FN代表预测负类,但是预测错误了.

这样就能计算某个类别的F1-score了.但是其实F1-score还可以使用TP,FN等定义来计算,这两个公式是一样的.

image-20230902120824729

F1分数是一个按类计算的指标,这意味着如果你想计算一个包含多个类的数据集的总体F1分数,你需要以某种方式进行聚合。微观和宏观F1分数是进行这种聚合的两种方式。

当计算多类(这里包括两类)的F1-score时一般又分为微F1和宏F1,也就是Micro和Macro.

Macro F1

ClassTPFPFNF1 score
010230.8
12010120.6
25110.8
Sum351316

比如上面的三类,计算得到分别的F1,然后多类的F1-score的如果使用macro方式计算直接计算平均值即可。

对于class 0,首先准确率为10/12=0.83,查全率为10/13=0.769,则F1为1.27654/1.699=0.798,取0.8,同理算出所有类别的F1.则Macro F1为**Macro F1 score = (0.8+0.6+0.8)/3 = 0.73**

image-20230902120516225

Micro F1

Micro F1分数是使用真阳性(TP)、假阳性(FP)和假阴性(FN)的总数来计算,而不是针对每个类别单独计算。

ClassTPFPFNF1 score
010230.8
12010120.6
25110.8
Sum351316

类似上面的表格,计算Micro F1的话,直接套公式,Micro F1 score = 35 / (35 + 0.5 \* (13 + 16)) = 0.71,相当于把三类的数据当作一样的的了

FAQ

  1. 对于不平衡的数据集,Micro还是Macro F1得分更好

micro F1-score 在不平衡数据集上的表现比macro F1差。这是因为micro F1对每个观测值(样本)都具有同等的重要性,而macro F1是对每个类别都具有同等重要性。

也就是当某个类别中数据特别多,其他类别数据比较少时,Micro F1会更多考虑数据特别多的类.最终的分数掩盖了少数的表现,放大了大多数的表现。

  1. 为什么scikit学习分类报告中没有Micro平均值

当目标是单标签分类时,微观平均F1分数在分类报告中显示为accuracy。

这样做是因为在这种情况下,微观平均F1分数返回的值与accuracy相同

3.micro 和macro F1 有什么区别

micro 和macro F1分数之间的关键区别在于它们在不平衡数据集上的行为。当类不平衡时,micro F1分数通常不会返回模型性能的客观衡量标准,而macro F1分数可以这样做。

总结

如果你有一个不平衡的数据集,那么你应该使用macroF1分数,因为即使类是偏斜的,这仍然会反映真实的模型性能。然而,如果你有一个平衡的数据集,那么可以考虑microF1分数,特别是如果与最终用户交流结果很重要的话。

参考资料

  1. [Micro vs Macro F1 score, what’s the difference? (stephenallwright.com)](https://stephenallwright.com/micro-vs-macro-f1-score/#:~:text=The key difference between micro and macro F1,Another difference between the two metrics is interpretation.)
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: precision、recall、f1-score和support是机器学习中常用的评估指标。 其中,precision(精确率)指的是模型预测为正例的样本中,真正为正例的比例;recall(召回率)指的是真正为正例的样本中,被模型预测为正例的比例;f1-score(F1值)是precision和recall的调和平均数,用于综合评估模型的性能;support(支持数)指的是每个类别在数据集中出现的次数。 在分类问题中,precision、recall和f1-score都是用来评估模型的分类准确性的指标,而support则是用来衡量每个类别的样本数量。 ### 回答2: precision、recall、f1-score和support是机器学习中对分类模型性能评价的重要指标。 Precision(精确率)是指预测为正样本的样本中有多少是真正的正样本。它的计算公式为:Precision = 真正的正样本数 / 预测为正样本的样本数。Precision越高,说明模型预测的正样本越准确。 Recall(召回率)是指所有真正的正样本中,模型预测出了多少个正样本。它的计算公式为:Recall = 真正的正样本数 / 所有真正的正样本数。Recall越高,说明模型能够识别到更多的正样本。 F1-score(F1指标)是精确率和召回率的调和平均值。它的计算公式为:F1-score = 2 * Precision * Recall / (Precision + Recall)。F1-score综合考虑了模型的精确率和召回率,是一个更全面的评价模型分类性能的指标。 Support是指每个类别在测试集中出现的频率(数量)。这个指标主要是为了在多分类任务中,评价每个类别的影响力大小。 在实际应用中,需要综合考虑Precision、Recall和F1-score来评价一个分类模型的准确性和召回能力。比如,在医学领域中,如果一个肿瘤预测模型的Recall很高,说明模型能够预测出更多的真实患者,但如果Precision很低,就会出现很多误诊的情况。此时,我们可以将F1-score作为综合评价指标,考虑模型的精确率和召回率的平衡。 ### 回答3: 这四个指标是评估分类模型性能的重要指标,通常会和混淆矩阵一起使用来评价模型的表现。 Precision(精确率):是指模型在预测为正例中有多少是真正的正例,也可以说是真正例占全部预测为正例的比例。该指标越高,表示模型判断为正例的数据越有可能是真正的正例。 Recall(召回率):是指模型在所有真正实际为正例的样本中,能够被模型正确预测为正例的比例。该指标越高,表示模型能够更好地找到真正的正例。 F1-score:是指精确率和召回率的综合指标,是两者的调和平均数。该指标可以更全面地反映模型的准确率和遗漏率,适用于数据不平衡的情况。 Support(支持度):是指数据集中属于某个类别的样本数量,与其他指标不同的是,该指标没有考虑模型的预测结果,只是对数据集的分布做出了描述。 在实际应用中,选择哪个指标作为评价标准取决于具体任务的需求以及数据分布的特点。例如,在银行反欺诈领域,由于正例较少,需要更关注召回率以避免错过异常交易,而将精确率作为优化目标可能会导致将正常交易误判。因此,在不同场景下需要合理选择评价指标,并综合考虑多个指标综合评估模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

procoder338

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值