各种神经网络

神经网络

1.卷积神经网络CNN

适用于图像训练

卷积层

提取图像的局部特征(如边缘、纹理、形状等),将局部特征转为一个值

填充

保证输出的维度

步幅

隔几个步长移动一次窗口

卷积核

池化层

降低特征图的空间尺寸(降维),减少计算量,增强模型的鲁棒性

2.循环神经网络RNN

一个时间步输出一个隐藏状态

3.LSTM

为了缓解RNN梯度消失和梯度爆炸的问题

遗忘门

忘记之前多长时间的状态

输入门

控制从当前状态要存入多少新的信息

输出门

控制从记忆单元中读取多少信息作为当前时间步的隐藏状态

4.seq2seq

1.前向传播

编码器:由循环神经网络构成(将信息保存到隐藏状态中),将隐藏状态信息传递给解码器

解码器:也是由神经网络构成,基于编码器传递的向量,逐步生成目标序列

训练阶段,解码器的每次一输入不是使用上一次的预测结果,而是真实的结果

解码器计算损失值

累加每一个真实和预测的结果,计算总损失

2.反向传播

函数调用

5.Transform

1.架构图

编码解码图

原理图

Q 是“提问者”,K 是“索引标签”,V 是“实际内容”。

qkv为权重参数,下图表示第一个词和其它词的上下文信息

注意力机制:包含其它词的位置信息和其它词的上下文信息

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

skyQAQLinux

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值