高等数学学习笔记——第六十五讲——全微分概念

本文深入浅出地介绍了微积分中的核心概念——微分,从一元函数的线性逼近讲起,逐步过渡到二元函数的微分,包括偏增量、偏微分和全增量的解释,以及二元函数的切向量、切平面和局部线性近似等内容。通过具体实例,帮助读者理解微分的本质和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1. 问题引入——“以直代曲”——以直线近似曲线,“以平代曲”——以平面近似曲面

 

2. 一元函数微分的概念(线性逼近,可微与可导等价,以直代曲)

 

3. 二元函数的微分(偏增量,偏微分,全增量)

 

4. 二元函数的切向量、切平面(假设二元函数具有一阶连续偏导数)

 

5. 二元函数的局部线性近似(局部线性化函数)

 

6. 局部线性近似函数

 

7. 二元函数的可微与全微分的定义

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值