【应试技巧】格林公式记忆方法及简单推导

视频讲解:格林公式记忆方法及简单推导
大家在学格林公式的时候会发现其实书本上给的形式并不容易记忆。
大家可能会产生下述的问题
忘记了逆时针和顺时针哪个是正方向?
忘记了P,Q该对谁求偏导?
忘记了求偏导以后是谁减谁?

本文分为两个部分,第一部分是将格林公式进行转换成更容易记忆的形式。
第二部分是简单的对格林公式进行推导,如果在考场上实在想不起来,也可以通过2-3分钟的计算来得出格林公式。

首先我们要知道,格林公式是建立闭合曲线积分和二重积分的桥梁。
∮ ↔ 格林公式 ∬ \oint{}\xleftrightarrow{\text{格林公式}}\iint{} 格林公式

将它完整的写出来
∮ L P d x + Q d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \oint_L{Pdx+Qdy}=\iint_D{\left( \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right) dxdy} LPdx+Qdy=D(xQyP)dxdy

记忆方法

逆时针怎么记,大家拿出右手,给自己竖个大拇指,咱们考研人都是棒棒的,然后四指弯曲的方向(逆时针)就是正方向,有勇气去考研同学们都很棒!
在这里插入图片描述
然后二重积分被积函数里面的形式怎么记?
可以把它写成行列式的形式
∂ Q ∂ x − ∂ P ∂ y = ∣ ∂ ∂ x ∂ ∂ y P Q ∣ \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\left| \begin{matrix} \frac{\partial}{\partial x}& \frac{\partial}{\partial y}\\ P& Q\\ \end{matrix} \right| xQyP=xPyQ
行列式的形式就很有规律,上面是两个偏导,下面也是按积分顺序的P,Q
如果熟悉哈密顿算子(Nabla算子)的同学也可以记这个形式
∂ Q ∂ x − ∂ P ∂ y = ∣ ∂ ∂ x ∂ ∂ y P Q ∣ = ∣ ∇ × ( P , Q ) ∣ \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\left| \begin{matrix} \frac{\partial}{\partial x}& \frac{\partial}{\partial y}\\ P& Q\\ \end{matrix} \right|=\left| \nabla \times \left( P,Q \right) \right| xQyP=xPyQ=×(P,Q)

简单推导

如果实在在考场上记不得,也可以通过简单的方式推导出二重积分里面的被积函数。
用一个最简单的曲线,逆时针的矩形,令左下角的坐标为 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),右上角的坐标为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)
在这里插入图片描述

对其做线积分,可以拆成4段计算
∮ C = ∫ C 1 + ∫ C 2 + ∫ C 3 + ∫ C 4 \oint_C{}=\int_{C1}{}+\int_{C2}{}+\int_{C3}{}+\int_{C4}{} C=C1+C2+C3+C4

对于 C 1 C1 C1段, y = y 0 , d y = 0 y=y_0, dy=0 y=y0,dy=0
∫ C 1 P d x + Q d y = ∫ x 0 x 1 P ( x , y 0 ) d x \int_{C1}{Pdx+Qdy}=\int_{x_0}^{x_1}{P\left( x,y_0 \right)dx} C1Pdx+Qdy=x0x1P(x,y0)dx
对于 C 2 C2 C2段, x = x 1 , d x = 0 x=x_1, dx=0 x=x1,dx=0
∫ C 2 P d x + Q d y = ∫ y 0 y 1 Q ( x 1 , y ) d y \int_{C2}{Pdx+Qdy}=\int_{y_0}^{y_1}{Q\left( x_1,y \right)dy} C2Pdx+Qdy=y0y1Q(x1,y)dy
同理可得
∫ C 3 P d x + Q d y = ∫ x 1 x 0 P ( x , y 1 ) d x = − ∫ x 0 x 1 P ( x , y 1 ) d x \int_{C3}{Pdx+Qdy}=\int_{x_1}^{x_0}{P\left( x,y_1 \right)dx}=-\int_{x_0}^{x_1}{P\left( x,y_1 \right)dx} C3Pdx+Qdy=x1x0P(x,y1)dx=x0x1P(x,y1)dx
∫ C 4 P d x + Q d y = ∫ y 1 y 0 Q ( x 0 , y ) d y = − ∫ y 0 y 1 Q ( x 0 , y ) d y \int_{C4}{Pdx+Qdy}=\int_{y_1}^{y_0}{Q\left( x_0,y \right)dy}=-\int_{y_0}^{y_1}{Q\left( x_0,y \right)dy} C4Pdx+Qdy=y1y0Q(x0,y)dy=y0y1Q(x0,y)dy

则对整个的线积分为
∮ L P d x + Q d y = ∫ x 0 x 1 P ( x , y 0 ) d x + ∫ y 0 y 1 Q ( x 1 , y ) d y − ∫ x 0 x 1 P ( x , y 1 ) d x − ∫ y 0 y 1 Q ( x 0 , y ) d y \oint_L{Pdx+Qdy}=\int_{x_0}^{x_1}{P\left( x,y_0 \right)dx}+\int_{y_0}^{y_1}{Q\left( x_1,y \right)dy}-\int_{x_0}^{x_1}{P\left( x,y_1 \right)dx}-\int_{y_0}^{y_1}{Q\left( x_0,y \right)dy} LPdx+Qdy=x0x1P(x,y0)dx+y0y1Q(x1,y)dyx0x1P(x,y1)dxy0y1Q(x0,y)dy
将积分限相同的进行合并
∮ L P d x + Q d y = ∫ x 0 x 1 [ P ( x , y 0 ) − P ( x , y 1 ) ] d x + ∫ y 0 y 1 [ Q ( x 1 , y ) − Q ( x 0 , y ) ] d y \oint_L{Pdx+Qdy}=\int_{x_0}^{x_1}{\left[ P\left( x,y_0 \right) -P\left( x,y_1 \right) \right]dx}+\int_{y_0}^{y_1}{\left[ Q\left( x_1,y \right) -Q\left( x_0,y \right) \right]dy} LPdx+Qdy=x0x1[P(x,y0)P(x,y1)]dx+y0y1[Q(x1,y)Q(x0,y)]dy
被积函数里面的减法我们可以写成定积分的形式
P ( x , y 0 ) − P ( x , y 1 ) = ∫ y 1 y 0 P y ( x , y ) d y = − ∫ y 0 y 1 P y ( x , y ) d y P\left( x,y_0 \right) -P\left( x,y_1 \right) =\int_{y_1}^{y_0}{P_y\left( x,y \right) dy}=-\int_{y_0}^{y_1}{P_y\left( x,y \right) dy} P(x,y0)P(x,y1)=y1y0Py(x,y)dy=y0y1Py(x,y)dy
Q ( x 1 , y ) − Q ( x 0 , y ) = ∫ x 0 x 1 Q x ( x , y ) d x Q\left( x_1,y \right) -Q\left( x_0,y \right) =\int_{x_0}^{x_1}{Q_x\left( x,y \right) dx} Q(x1,y)Q(x0,y)=x0x1Qx(x,y)dx

于是就可以写成二重积分的形式
∮ L P d x + Q d y = − ∫ x 0 x 1 d x ∫ y 0 y 1 P y ( x , y ) d y + ∫ y 0 y 1 d y ∫ x 0 x 1 Q x ( x , y ) d x \oint_L{Pdx+Qdy}=-\int_{x_0}^{x_1}{dx}\int_{y_0}^{y_1}{P_y\left( x,y \right) dy}+\int_{y_0}^{y_1}{dy}\int_{x_0}^{x_1}{Q_x\left( x,y \right) dx} LPdx+Qdy=x0x1dxy0y1Py(x,y)dy+y0y1dyx0x1Qx(x,y)dx

由于我们的区域为矩形,所以交换积分次序很容易
− ∫ x 0 x 1 d x ∫ y 0 y 1 P y ( x , y ) d y + ∫ y 0 y 1 d y ∫ x 0 x 1 Q x ( x , y ) d x = ∬ D [ Q x ( x , y ) − P y ( x , y ) ] d x d y -\int_{x_0}^{x_1}{dx}\int_{y_0}^{y_1}{P_y\left( x,y \right) dy}+\int_{y_0}^{y_1}{dy}\int_{x_0}^{x_1}{Q_x\left( x,y \right) dx}=\iint\limits_D{\left[ Q_x\left( x,y \right) -P_y\left( x,y \right) \right] dxdy} x0x1dxy0y1Py(x,y)dy+y0y1dyx0x1Qx(x,y)dx=D[Qx(x,y)Py(x,y)]dxdy
至此我们就可以得到格林公式的形式
如果题目给的顺时针,那就顺时针的做一遍,最后结果会是
∬ D [ P y ( x , y ) − Q x ( x , y ) ] d x d y \iint\limits_D{\left[ P_y\left( x,y \right) -Q_x\left( x,y \right) \right] dxdy} D[Py(x,y)Qx(x,y)]dxdy

其实我们也可以将区域分割成一个个小矩形(同济书上是分别将区域横着切和竖着切来证明的),这样就可以推导出任意曲线的格林公式了,感兴趣的同学可以参考这篇文章
kaysen学长:格林公式史上最通俗最透彻讲解
将区域切成一个个小矩形,对每个矩形拿出来进行线积分到二重积分的转换
在这里插入图片描述
由于相邻的矩形线积分会互相抵消,所以将小矩形的线积分加起来就是外围曲线的线积分,小矩形的二重积分加起来就是整个区域的二重积分
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值