1.下载anaconda,在这下载清华源,(注意:jetson系列只能下红框里的,aarch64架构的!)
进入到下载文件夹下打开终端,依次输入命令(文件名自己改):
chomd +x Anaconda3-2024.02-1-Linux-aarch64.sh
./Anaconda3-2024.02-1-Linux-aarch64.sh
关闭终端重新打开,前面显示(base)就成功了。
2.创建虚拟环境
下面是查看有什么环境的代码不用运行,知道就行,虚拟环境的文件路径在./anaconda3/envs/下面
conda env list
创建虚拟环境,代码如下(文件名自己改)
conda create -n 文件名 python=3.8
这里的python版本跟jetson自带的不冲突,(最好用3.8的版本,别问为什么),接着打开这个虚拟环境,前面括号里的内容会变成自己命名的内容。
conda activate 文件名
后面所有下的东西都要基于这个环境下
3.安装cuda
接下来下载这里开始就要注意版本的对应问题了(重点)!!!高版本的低版本的我都尝试过,跑yolo模型都是没有任何问题的。(注意:orin系列自带Ubuntu20.04系统,所以安装jetpack就行)
一行一行执行下面代码(注意:第四行是关机,然后重新打开,需要重新进入虚拟环境(我不知道什么时候要进什么时候不要进,索性后面全部命令都在虚拟环境里面执行!!)
sudo apt upgrade
sudo apt update
sudo apt dist-upgrade
sudo reboot
sudo apt install nvidia-jetpack
我的jetpack是5.x版本,cuda是11.4
配置cuda
sudo gedit ~/.bashrc
在最下面添加这三行
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda
然后保存,退出
source ~/.bashrc
4.配置cudnn,接下来一行一行执行下面代码(版本改成自己的)
#复制文件到cuda目录下
cd /usr/include && sudo cp cudnn* /usr/local/cuda/include
cd /usr/lib/aarch64-linux-gnu && sudo cp libcudnn* /usr/local/cuda/lib64
#修改文件权限,修改复制完的头文件与库文件的权限,所有用户都可读,可写,可执行:
sudo chmod 777 /usr/local/cuda/include/cudnn.h
sudo chmod 777 /usr/local/cuda/lib64/libcudnn*
#重新软链接,这里的8.4.1和8对应安装的cudnn版本号和首数字
cd /usr/local/cuda/lib64
sudo ln -sf libcudnn.so.8.4.1 libcudnn.so.8
sudo ln -sf libcudnn_ops_train.so.8.4.1 libcudnn_ops_train.so.8
sudo ln -sf libcudnn_ops_infer.so.8.4.1 libcudnn_ops_infer.so.8
sudo ln -sf libcudnn_adv_train.so.8.4.1 libcudnn_adv_train.so.8
sudo ln -sf libcudnn_adv_infer.so.8.4.1 libcudnn_adv_infer.so.8
sudo ln -sf libcudnn_cnn_train.so.8.4.1 libcudnn_cnn_train.so.8
sudo ln -sf libcudnn_cnn_infer.so.8.4.1 libcudnn_cnn_infer.so.8
sudo ldconfig
测试
sudo cp -r /usr/src/cudnn_samples_v8/ ~/
cd ~/cudnn_samples_v8/mnistCUDNN
sudo chmod 777 ~/cudnn_samples_v8
sudo make clean && sudo make
./mnistCUDNN
出现“Test passed!”表示成功了
5.下载pytorch
因为我的cuda是11.4,对应pytorch1.12.0,对应后面的torchvision0.13.0,其他对应版本自己去查
pytorch各版本自己下对应的,下载好后进入下载的路径打开终端,进入虚拟环境后输入
pip install torch-1.12.0a0+2c916ef.nv22.3-cp38-cp38-linux_aarch64.whl
有问题的话试一下这个在重新输入
sudo apt-get -y update;
sudo apt-get -y install autoconf bc build-essential g++-8 gcc-8 clang-8 lld-8 gettext-base gfortran-8 iputils-ping libbz2-dev libc++-dev libcgal-dev libffi-dev libfreetype6-dev libhdf5-dev libjpeg-dev liblzma-dev libncurses5-dev libncursesw5-dev libpng-dev libreadline-dev libssl-dev libsqlite3-dev libxml2-dev libxslt-dev locales moreutils openssl python-openssl rsync scons python3-pip libopenblas-dev
6.安装torchvision
我下载的是0.13.0版本
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev
git clone --branch v0.13.0 https://github.com/pytorch/vision torchvision
cd torchvision
export BUILD_VERSION=v0.13.0
python3 setup.py install --user
报错的话缺啥库就下什么库就行,后面是使用清华源,我习惯pip install 库的时候直接加在后面
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple
关掉终端重新打开,重新进入虚拟环境。
最后验证pytorch,torchvision是否成功。
python
import torch
import torchvision
不报错就成功了。
下面一行代码是查看在虚拟环境中安装了哪些库的
pip list
7.安装pyside6(做可视化界面用的)
pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple
(为啥用pyside6,不用pyside2或者pyqt5,因为我这两个安装失败了,耽搁了很久!pyside6就直接成功了)
8.下载pycharm
9.添加外部工具:QtDesinger,PyUIC,PyRCC