jetson AGX Orin配置虚拟环境anaconda,cuda,pytorch,torchvision后续制作可视化界面pyqt5,pyside6

1.下载anaconda,在这下载清华源,(注意:jetson系列只能下红框里的,aarch64架构的!)

进入到下载文件夹下打开终端,依次输入命令(文件名自己改):

chomd +x Anaconda3-2024.02-1-Linux-aarch64.sh
./Anaconda3-2024.02-1-Linux-aarch64.sh

关闭终端重新打开,前面显示(base)就成功了。

2.创建虚拟环境

下面是查看有什么环境的代码不用运行,知道就行,虚拟环境的文件路径在./anaconda3/envs/下面

conda env list

创建虚拟环境,代码如下(文件名自己改)

conda create -n 文件名 python=3.8

这里的python版本跟jetson自带的不冲突,(最好用3.8的版本,别问为什么),接着打开这个虚拟环境,前面括号里的内容会变成自己命名的内容。

conda activate 文件名

后面所有下的东西都要基于这个环境下

3.安装cuda

接下来下载这里开始就要注意版本的对应问题了(重点)!!!高版本的低版本的我都尝试过,跑yolo模型都是没有任何问题的。(注意:orin系列自带Ubuntu20.04系统,所以安装jetpack就行)

一行一行执行下面代码(注意:第四行是关机,然后重新打开,需要重新进入虚拟环境(我不知道什么时候要进什么时候不要进,索性后面全部命令都在虚拟环境里面执行!!)

sudo apt upgrade
sudo apt update
sudo apt dist-upgrade
sudo reboot
sudo apt install nvidia-jetpack

我的jetpack是5.x版本,cuda是11.4

配置cuda

sudo gedit ~/.bashrc

在最下面添加这三行

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda

然后保存,退出

source ~/.bashrc

4.配置cudnn,接下来一行一行执行下面代码(版本改成自己的)

#复制文件到cuda目录下
cd /usr/include && sudo cp cudnn* /usr/local/cuda/include
cd /usr/lib/aarch64-linux-gnu && sudo cp libcudnn* /usr/local/cuda/lib64

#修改文件权限,修改复制完的头文件与库文件的权限,所有用户都可读,可写,可执行:
sudo chmod 777 /usr/local/cuda/include/cudnn.h 
sudo chmod 777 /usr/local/cuda/lib64/libcudnn*

#重新软链接,这里的8.4.1和8对应安装的cudnn版本号和首数字
cd /usr/local/cuda/lib64

sudo ln -sf libcudnn.so.8.4.1 libcudnn.so.8

sudo ln -sf libcudnn_ops_train.so.8.4.1 libcudnn_ops_train.so.8
sudo ln -sf libcudnn_ops_infer.so.8.4.1 libcudnn_ops_infer.so.8

sudo ln -sf libcudnn_adv_train.so.8.4.1 libcudnn_adv_train.so.8
sudo ln -sf libcudnn_adv_infer.so.8.4.1 libcudnn_adv_infer.so.8

sudo ln -sf libcudnn_cnn_train.so.8.4.1 libcudnn_cnn_train.so.8
sudo ln -sf libcudnn_cnn_infer.so.8.4.1 libcudnn_cnn_infer.so.8

sudo ldconfig

测试

sudo cp -r /usr/src/cudnn_samples_v8/ ~/
cd ~/cudnn_samples_v8/mnistCUDNN
sudo chmod 777 ~/cudnn_samples_v8
sudo make clean && sudo make
./mnistCUDNN

出现“Test passed!”表示成功了

5.下载pytorch

因为我的cuda是11.4,对应pytorch1.12.0,对应后面的torchvision0.13.0,其他对应版本自己去查

pytorch各版本自己下对应的,下载好后进入下载的路径打开终端,进入虚拟环境后输入

pip install torch-1.12.0a0+2c916ef.nv22.3-cp38-cp38-linux_aarch64.whl 

有问题的话试一下这个在重新输入

sudo apt-get -y update; 
sudo apt-get -y install autoconf bc build-essential g++-8 gcc-8 clang-8 lld-8 gettext-base gfortran-8 iputils-ping libbz2-dev libc++-dev libcgal-dev libffi-dev libfreetype6-dev libhdf5-dev libjpeg-dev liblzma-dev libncurses5-dev libncursesw5-dev libpng-dev libreadline-dev libssl-dev libsqlite3-dev libxml2-dev libxslt-dev locales moreutils openssl python-openssl rsync scons python3-pip libopenblas-dev

6.安装torchvision

我下载的是0.13.0版本

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev 

git clone --branch v0.13.0 https://github.com/pytorch/vision torchvision

cd torchvision

export BUILD_VERSION=v0.13.0

python3 setup.py install --user

报错的话缺啥库就下什么库就行,后面是使用清华源,我习惯pip install 库的时候直接加在后面

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple

关掉终端重新打开,重新进入虚拟环境。

最后验证pytorch,torchvision是否成功。

python
import torch
import torchvision

不报错就成功了。

下面一行代码是查看在虚拟环境中安装了哪些库的

pip list

7.安装pyside6(做可视化界面用的)

pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple

(为啥用pyside6,不用pyside2或者pyqt5,因为我这两个安装失败了,耽搁了很久!pyside6就直接成功了)

8.下载pycharm

9.添加外部工具:QtDesinger,PyUIC,PyRCC

### 安装 VSCode 和 Anaconda 的方法 #### 一、安装 Anaconda 为了在 Jetson AGX Orin 平台上成功安装并运行 Anaconda,可以按照以下说明操作: 1. **访问下载页面** 访问清华大学开源软件镜像站或其他官方资源站点,找到适用于 aarch64 架构的 Anaconda 版本文件链接[^3]。 2. **下载 Anaconda 安装包** 使用 `wget` 命令下载适合 ARM64 或 AARCH64 架构的安装脚本。例如: ```bash wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-YYYY.MM-pyXX_aarch64.sh ``` 3. **执行安装脚本** 下载完成后,在终端中通过以下命令启动安装程序: ```bash bash Anaconda3-XXXX.XX-Linux-aarch64.sh ``` 按照提示逐步完成安装过程,期间可能需要多次输入 `yes` 并确认路径设置[^1]。 4. **初始化 Conda 环境** 安装结束后,激活 conda 初始化功能: ```bash source ~/.bashrc ``` 5. **验证安装状态** 输入以下命令检查是否正常工作: ```bash conda --version ``` --- #### 二、安装 Visual Studio Code (VSCode) 1. **获取 VSCode 预编译版本** 对于 Jetson AGX Orin 设备,由于其基于 Linux for Tegra (L4T),需特别选择支持 ARM64 的预构建版本。可以从 Microsoft 提供的 Debian 软件包地址下载对应版本: ```bash wget https://update.code.visualstudio.com/latest/linux-deb-armhf/stable -O code_arm64.deb ``` 2. **安装 .deb 文件** 利用 dpkg 工具来安装已下载的 `.deb` 包: ```bash sudo dpkg -i code_arm64.deb ``` 3. **解决依赖关系冲突(如有必要)** 如果遇到未满足的依赖项,则可以通过 apt-get 进行修复: ```bash sudo apt-get install -f ``` 4. **启动 VSCode 应用程序** 执行如下指令打开编辑器界面: ```bash code ``` --- #### 三、集成 VSCode 和 Anaconda 为了让 VSCode 支持 Python 开发以及调用由 Anaconda 创建的虚拟环境,还需额外配置插件和路径映射。 1. **安装 Python 插件扩展** 启动 VSCode 后转至左侧边栏中的 Extensions 图标,搜索 “Python”,点击 Install 加入到当前实例里。 2. **指定解释器位置** 在顶部菜单依次选取 File -> Preferences -> Settings ,或者直接按下快捷键 Ctrl+, 。接着查找 interpreter 设置选项卡,并手动切换成之前定义好的某个特定 anaconda envs 子目录下的可执行文件路径,比如 `/home/user_name/.conda/envs/myenv/bin/python`. 3. **测试连接有效性** 新建一个简单的 test.py 测试脚本内容如下所示: ```python import sys print(f"Using Python version {sys.version}") ``` 右击该文档区域选择 Run Python File In Terminal 查看输出结果是否匹配预期目标版本号。 --- ### 注意事项 - 若计划进一步部署深度学习框架 PyTorch 至此平台之上,请参照先前提及的相关资料完成 CUDA/CuDNN/TensorRT 组件适配流程后再继续推进其余环节[^4]。 - 推荐定期更新基础系统组件以保持兼容性和安全性补丁最新水平。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值