最近我打算写一套qmt的量化教程,目前主要的实盘交易框架是qmt,ptrade,qmt支持本地,服务器运行是比较开放的系统,ptrade在服务器运行,比较封闭的系统,各有所长,qmt,分为miniqmt,和大qmt,miniqmt是本地的api,通过客户端转发到证券公司,大qmt只能在证券公司的客户端运行
图为 QMT 系统 Python 模型运行流程图。当用户在 Python 平台编写好自己的策略后,可以点击【运
行】按钮来运行脚本。界面层在向下层请求数据的过程中,会首先创建一个 Python 模型,这个模型关
联当前界面运行的产品。模型创建完毕后,加载用户编写的 Python 脚本,并调用 init() 初始化函数。模
型运行所需的数据也在此时向下层发出请求。下层在接收到请求后,会向服务器请求行情数据,并组织
好数据格式。Python 模型根据返回的数据
这个教程利用miniqmt为例子写一个系列教程,qmt量化
先认识一下什么是qmt
QMT(Quantitative Money Trading)是券商提供的一款量化交易平台,主要面向专业量化投资者和机构客户。以下是它的主要特点:
核心功能
- 策略开发:支持Python语言编写量化策略
- 回测系统:提供历史数据回测功能
- 实盘交易:支持连接券商实盘交易
- 多账户管理:可同时管理多个交易账户
优势特点
- 与券商系统深度整合,交易通道稳定
- 提供丰富的市场数据接口
- 支持高频交易需求
- 有完善的风控管理系统
适用对象
- 专业量化交易员
- 私募基金等机构投资者
- 有编程能力的高级个人投资者
后面介绍怎么样写策略代码调用数据接口