qmt量化研究--1qmt介绍

最近我打算写一套qmt的量化教程,目前主要的实盘交易框架是qmt,ptrade,qmt支持本地,服务器运行是比较开放的系统,ptrade在服务器运行,比较封闭的系统,各有所长,qmt,分为miniqmt,和大qmt,miniqmt是本地的api,通过客户端转发到证券公司,大qmt只能在证券公司的客户端运行

图为 QMT 系统 Python 模型运行流程图。当用户在 Python 平台编写好自己的策略后,可以点击【运

行】按钮来运行脚本。界面层在向下层请求数据的过程中,会首先创建一个 Python 模型,这个模型关

联当前界面运行的产品。模型创建完毕后,加载用户编写的 Python 脚本,并调用 init() 初始化函数。模

型运行所需的数据也在此时向下层发出请求。下层在接收到请求后,会向服务器请求行情数据,并组织

好数据格式。Python 模型根据返回的数据

这个教程利用miniqmt为例子写一个系列教程,qmt量化

先认识一下什么是qmt

QMT(Quantitative Money Trading)是券商提供的一款量化交易平台,主要面向专业量化投资者和机构客户。以下是它的主要特点:

核心功能

  • 策略开发:支持Python语言编写量化策略
  • 回测系统:提供历史数据回测功能
  • 实盘交易:支持连接券商实盘交易
  • 多账户管理:可同时管理多个交易账户

优势特点

  • 与券商系统深度整合,交易通道稳定
  • 提供丰富的市场数据接口
  • 支持高频交易需求
  • 有完善的风控管理系统

适用对象

  • 专业量化交易员
  • 私募基金等机构投资者
  • 有编程能力的高级个人投资者

后面介绍怎么样写策略代码调用数据接口

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xg_quants1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值