深度可分离卷积(Depthwise Separable Convolution)

  深度可分离卷积(Depthwise Separable Convolution)是一种卷积神经网络中常用的卷积操作,它在减少计算量的同时保持了较好的特征提取能力,因此被广泛用于轻量化的模型设计中。深度可分离卷积将标准卷积操作分解为两步:深度卷积(Depthwise Convolution)和逐点卷积(Pointwise Convolution)。
  这种分解带来了以下几个优点:
  1. 减少参数量: 标准卷积使用一个卷积核对输入数据进行卷积,而深度可分离卷积将卷积操作分解为深度卷积和逐点卷积,从而显著减少了参数量。深度卷积只使用一个卷积核对输入通道逐通道进行卷积,逐点卷积使用1x1的卷积核进行通道之间的混合。
  2. 降低计算复杂度: 由于减少了参数量,深度可分离卷积在计算上更加高效,适合在资源有限的环境下使用,如移动设备或嵌入式系统。
  3. 提升特征提取能力: 尽管参数量减少了,但深度可分离卷积通过逐点卷积将不同通道的信息进行了组合,从而保持了一定的特征提取能力。
  下面是深度可分离卷积的两个主要步骤:
  1. 深度卷积(Depthwise Convolution):
  深度卷积是在输入的每个通道上分别应用卷积核,生成相同数量的通道,然后将这些通道按通道维度进行堆叠。它只关注输入的空间维度,不考虑通道之间的信息。深度卷积的计算公式如下:
  对于输入特征图 X X X,输出特征图 Y Y Y 的深度卷积可以表示为:

Y i , j , k = ∑ m , n X i + m , j + n , k ⋅ K m , n Y_{i,j,k} = \sum_{m,n} X_{i+m,j+n,k} \cdot K_{m,n} Yi,j,k=m,nXi+m,j+n,kKm,n
  其中, i , j i, j i,j 是输出特征图的空间位置, k k k 是通道索引, m , n m, n m,n 是卷积核的空间位置, K m , n K_{m,n} Km,n 是卷积核的权重。
  2. 逐点卷积(Pointwise Convolution):
  逐点卷积是应用1x1的卷积核在不同通道之间进行卷积,用于将通道之间的信息进行混合。它不改变特征图的空间维度,只改变通道数。逐点卷积的计算公式如下:
  对于输入特征图 X X X,输出特征图 Y Y Y 的逐点卷积可以表示为:
Y i , j , k ′ = ∑ k X i , j , k ⋅ K k , k ′ Y_{i,j,k'} = \sum_{k} X_{i,j,k} \cdot K_{k,k'} Yi,j,k=kXi,j,kKk,k
  其中, i , j i, j i,j 是输出特征图的空间位置, k ′ k' k 是逐点卷积后的通道索引, k k k 是逐点卷积前的通道索引, K k , k ′ K_{k,k'} Kk,k 是卷积核的权重。
  下面是使用 PyTorch 实现深度可分离卷积和标准卷积,并使用 torchsummary 输出它们的模型参数量的代码:

import torch
import torch.nn as nn
from torchsummary import summary

#1、深度可分离卷积
class DepthwiseSeparableConv(nn.Module):
    def __init__(self,in_channels,out_channels):
        super(DepthwiseSeparableConv,self).__init__()
        #深度卷积
        self.depthwise=nn.Conv2d(in_channels,in_channels,kernel_size=3,padding=1,groups=in_channels)
        #逐点卷积
        self.pointwise=nn.Conv2d(in_channels,out_channels,kernel_size=3)

    def forward(self,x):
        x=self.depthwise(x)
        x=self.pointwise(x)
        return x

#2、普通卷积
class NormalConv(nn.Module):
    def __init__(self,in_channels,out_channels):
        super(NormalConv,self).__init__()
        self.conv=nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1)

    def forward(self,x):
        x=self.conv(x)
        return x

# 创建深度可分离卷积模型和普通卷积模型,并输出参数量
depthwise_model=DepthwiseSeparableConv(3,64)
normal_model=NormalConv(3,64)

# 将模型加载到设备上(CPU或GPU)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
depthwise_model.to(device)
normal_model.to(device)

input_tensor=(3,224,224)
print("Depthwise Separable Convolution:")
summary(depthwise_model, input_tensor)  # 输入尺寸为(3, 224, 224)

print("\nNormal Convolution:")
summary(normal_model, input_tensor)  # 输入尺寸为(3, 224, 224)
  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 深度可分离卷积(Depthwise Separable Convolution)是一种卷积方式,它将卷积操作分为两步来进行:深度卷积和点卷积。其中,深度卷积对于每个输入通道分别做卷积,而点卷积则将各个输入通道的卷积结果按照权值线性组合。这样可以减少参数量,加速计算,并且能够在保持精度的前提下压缩模型。 ### 回答2: Depthwise separable convolution深度可分离卷积)是一种轻量级的卷积操作,它可以有效降低模型的参数量和计算量,从而实现更加高效的模型训练和推理。 相比于传统的卷积操作,depthwise separable convolution 由两个步骤构成:depthwise convolution(深度卷积)和pointwise convolution(逐点卷积)。具体来说,先对输入的每个通道单独进行卷积操作(即深度卷积),然后再通过逐点卷积来将各个通道的特征进行整合,最终得到输出结果。 对于一个用于目标识别的卷积网络来说,depthwise separable convolution 的主要优势在于它能够显著减少网络中的参数量和计算量。由于在进行深度卷积时,每个通道都是单独进行处理,所以会大幅降低计算量和计算时间。而逐点卷积则可以有效压缩卷积层的通道数,从而降低参数量和内存占用。 举个例子,假设对于一个输入大小为H×W×C的图像,原本需要使用大小为K×K×C×S的卷积核来进行卷积操作,其中S表示输出通道数目。那么使用 depthwise separable convolution 进行操作时,先使用大小为K×K×C的卷积核进行深度卷积(相当于使用了C个大小为K×K的卷积核),然后通过大小为1×1×CS的卷积核进行逐点卷积。这样,在输出相同结果的情况下,参数量和计算量就能大幅降低,从而加速模型的训练和推理。 总之,depthwise separable convolution 是一种轻量级的卷积操作,可以有效压缩模型的参数量和计算量,提高模型的计算效率。在目标识别等领域,可以作为一种强大的工具,用于设计更加高效的卷积神经网络。 ### 回答3: Depthwise separable convolution深度可分离卷积)是一种卷积神经网络CNN)中用于减少网络参数个数和计算量的结构。它是由谷歌的研究者提出的一种卷积结构,并在MobileNet中得到广泛应用。 普通的卷积神经网络是由卷积层、池化层和全连接层组成。其中,卷积层是网络中最消耗时间和空间的部分,需要大量的计算资源。深度可分离卷积是一种卷积结构,通过分离卷积的过程,将卷积操作分为两个部分:深度卷积和逐点卷积。 首先,深度卷积只在每个输入通道上进行卷积操作,而不是在所有输入通道上同时进行。这样可以减少卷积核的数量。其次,逐点卷积使用1x1的卷积核,对每个通道分别进行卷积操作。这可以将通道之间的相互影响降到最低。 因为这种分离,深度可分离卷积可以明显降低计算量和模型参数,能够在保证模型精度的情况下,让模型具有更小的体积和更高的运行速度。相比于普通的卷积神经网络深度可分离卷积具有更好的效率和性能。 深度可分离卷积的应用可以广泛用于移动端设备、无线网络等资源有限的环境中。它在现代机器学习使用中得到了广泛的应用,包括在计算机视觉领域(如图像识别、物体检测)和语音处理领域(如语音识别)等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Make_magic

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值