平稳性与自相关性的解析

  1. τ \tau τ 越来越大时(即两个时间点相距较远),信号之间的相关性逐渐减弱,信号在时间 t 1 t_1 t1 t 1 + τ t_1 + \tau t1+τ之间变得不相关。

  2. 这意味着,随着 τ \tau τ 越来越大,信号在 t 1 t_1 t1 t 1 + τ t_1 + \tau t1+τ 处的相关性越来越弱,最终两个时刻的信号变得不相关(uncorrelated)。当信号变得不相关时,两个时刻的信号值的乘积期望可以分解为两个独立期望的乘积。

  3. 一个随机过程 x ( t ) x(t) x(t) 如果满足以下条件,就被称为平稳随机过程(严格平稳):均值不随时间变化自相关函数仅依赖于时间差 τ \tau τ方差不随时间变化:对于任意的 t t t,信号的方差 V ( x ( t ) ) \mathbb{V}(x(t)) V(x(t)) 是常数。

  4. 在平稳过程中,随着 τ → ∞ \tau \to \infty τ,信号会逐渐失去相关性,变得不相关(uncorrelated)。因此,当 τ \tau τ 很大时,自相关函数会趋于 E [ x ] 2 \mathbb{E}[x]^2 E[x]2,即信号的均值的平方。这个行为在图中表现为,当时间差 τ \tau τ 越来越大时,自相关函数 R x ( τ ) R_x(\tau) Rx(τ) 最终趋于 E [ x ] 2 \mathbb{E}[x]^2 E[x]2,这个值被称为直流功率(DC Power),而信号中波动的部分(AC Power)逐渐消失。

  5. 平稳过程与自相关函数 R x ( t 1 , t 2 ) R_x(t_1, t_2) Rx(t1,t2)

    • 首先,平稳随机过程具有以下两个重要特性:

      1. 均值不随时间变化 E [ x ( t ) ] = μ \mathbb{E}[x(t)] = \mu E[x(t)]=μ 对所有 t t t 都相同。
      2. 自相关函数只依赖时间差:即 R x ( t 1 , t 2 ) = E [ x ( t 1 ) x ( t 2 ) ] R_x(t_1, t_2) = \mathbb{E}[x(t_1) x(t_2)] Rx(t1,t2)=E[x(t1)x(t2)] 只依赖于 t 2 − t 1 = τ t_2 - t_1 = \tau t2t1=τ,与具体的 t 1 t_1 t1 无关。

      当我们计算自相关函数 R x ( τ ) R_x(\tau) Rx(τ) 时,对于平稳过程 ,有:
      R x ( τ ) = E [ x ( t 1 ) x ( t 1 + τ ) ] R_x(\tau) = \mathbb{E}[x(t_1) x(t_1 + \tau)] Rx(τ)=E[x(t1)x(t1+τ)]
      其中 τ \tau τ 是时间差。

在这里插入图片描述

1. Uncorrelated(不相关)

图中的自相关函数 R x ( τ ) = E [ x ( t 1 ) x ( t 1 + τ ) ] R_x(\tau) = \mathbb{E}[x(t_1) x(t_1 + \tau)] Rx(τ)=E[x(t1)x(t1+τ)] 描述的是随机过程在不同时间点之间的相关性。自相关函数衡量信号在两个时间点 t 1 t_1 t1 t 1 + τ t_1 + \tau t1+τ 之间的相似程度。

  • τ \tau τ 很小时(即两个时间点非常接近),信号在两个时间点通常具有较高的相关性,即信号的自相关函数 R x ( τ ) R_x(\tau) Rx(τ) 值较大。
  • τ \tau τ 越来越大时(即两个时间点相距较远),信号之间的相关性逐渐减弱,信号在时间 t 1 t_1 t1 t 1 + τ t_1 + \tau t1+τ之间变得不相关。

图中描述的是当 τ → ∞ \tau \to \infty τ 时,自相关函数趋于不相关状态,即:

R x ( ∞ ) = E [ x ( t 1 ) x ( ∞ ) ] = E [ x ( t 1 ) ] E [ x ( ∞ ) ] R_x(\infty) = \mathbb{E}[x(t_1) x(\infty)] = \mathbb{E}[x(t_1)] \mathbb{E}[x(\infty)] Rx()=E[x(t1)x()]=E[x(t1)]E[x()]

这意味着,随着 τ \tau τ 越来越大,信号在 t 1 t_1 t1 t 1 + τ t_1 + \tau t1+τ 处的相关性越来越弱,最终两个时刻的信号变得不相关(uncorrelated)。当信号变得不相关时,两个时刻的信号值的乘积期望可以分解为两个独立期望的乘积。

2. Stationary(平稳性)

图中提到的“stationary”是指平稳随机过程。平稳过程的一个重要特性是自相关函数只依赖于时间差 τ \tau τ,而不依赖于具体的时间点 t 1 t_1 t1

对于平稳过程,期望值 E [ x ( t ) ] \mathbb{E}[x(t)] E[x(t)] 是常数,不随时间变化。因此,当我们计算 E [ x ( t 1 ) ] \mathbb{E}[x(t_1)] E[x(t1)] E [ x ( ∞ ) ] \mathbb{E}[x(\infty)] E[x()] 时,由于过程的平稳性,这两个期望值是相同的,都是 E [ x ] \mathbb{E}[x] E[x] ⟨ x ⟩ \langle x \rangle x

在图中提到“stationary”(平稳)主要是因为平稳性是分析随机过程时一个非常重要的概念,尤其是在计算自相关函数时。自相关函数 R x ( τ ) = E [ x ( t 1 ) x ( t 1 + τ ) ] R_x(\tau) = \mathbb{E}[x(t_1) x(t_1 + \tau)] Rx(τ)=E[x(t1)x(t1+τ)] 作为随机过程的重要统计特性,往往在平稳随机过程中有着更简化和对称的性质。

让我们详细讨论为什么在这个上下文中提到stationary(平稳过程)以及其意义:

2.1. 什么是平稳随机过程?

一个随机过程 x ( t ) x(t) x(t) 如果满足以下条件,就被称为平稳随机过程(严格平稳):

  • 均值不随时间变化:对于任意的 t t t E [ x ( t ) ] = μ \mathbb{E}[x(t)] = \mu E[x(t)]=μ 是常数,不依赖于 t t t
  • 自相关函数仅依赖于时间差 τ \tau τ:自相关函数 R x ( t 1 , t 2 ) = E [ x ( t 1 ) x ( t 2 ) ] R_x(t_1, t_2) = \mathbb{E}[x(t_1)x(t_2)] Rx(t1,t2)=E[x(t1)x(t2)] 只依赖于时间差 τ = t 2 − t 1 \tau = t_2 - t_1 τ=t2t1,而不依赖于具体的时间点 t 1 t_1 t1 t 2 t_2 t2
  • 方差不随时间变化:对于任意的 t t t,信号的方差 V ( x ( t ) ) \mathbb{V}(x(t)) V(x(t)) 是常数。

在信号处理和随机过程的分析中,平稳性是一个重要假设,因为它允许我们用更简单的数学工具来分析过程的特性,比如频域分析和滤波等。

2.2. 为什么提到平稳性?

提到平稳性是为了说明,当处理自相关函数 R x ( τ ) = E [ x ( t 1 ) x ( t 1 + τ ) ] R_x(\tau) = \mathbb{E}[x(t_1) x(t_1 + \tau)] Rx(τ)=E[x(t1)x(t1+τ)] 时,如果假设 x ( t ) x(t) x(t) 是一个平稳随机过程,自相关函数就会具备一些有利的性质。这些性质包括:

  • 简化分析:平稳过程的自相关函数只依赖于时间差 τ \tau τ,而不依赖于具体的时间点 t 1 t_1 t1 t 2 t_2 t2。因此,分析自相关函数变得更加简单,因为我们只需要考虑 τ \tau τ

  • 长期行为:在平稳过程中,随着 τ → ∞ \tau \to \infty τ,信号会逐渐失去相关性,变得不相关(uncorrelated)。因此,当 τ \tau τ 很大时,自相关函数会趋于 E [ x ] 2 \mathbb{E}[x]^2 E[x]2,即信号的均值的平方。这个行为在图中表现为,当时间差 τ \tau τ 越来越大时,自相关函数 R x ( τ ) R_x(\tau) Rx(τ) 最终趋于 E [ x ] 2 \mathbb{E}[x]^2 E[x]2,这个值被称为直流功率(DC Power),而信号中波动的部分(AC Power)逐渐消失。

图中使用平稳性假设来解释:

  • 平稳过程的期望值不变:在平稳过程中,信号的期望 E [ x ( t ) ] \mathbb{E}[x(t)] E[x(t)] 不会随着时间改变。因此, E [ x ( t 1 ) ] = E [ x ( ∞ ) ] \mathbb{E}[x(t_1)] = \mathbb{E}[x(\infty)] E[x(t1)]=E[x()] 这一性质允许我们将 E [ x ( t 1 ) x ( t 1 + τ ) ] \mathbb{E}[x(t_1) x(t_1 + \tau)] E[x(t1)x(t1+τ)] 分解为 E [ x ( t 1 ) ] E [ x ( t 1 + τ ) ] \mathbb{E}[x(t_1)] \mathbb{E}[x(t_1 + \tau)] E[x(t1)]E[x(t1+τ)],当 τ → ∞ \tau \to \infty τ 时,信号变得不相关。

  • 自相关函数的长时间行为:平稳过程的自相关函数只依赖于时间差 τ \tau τ。当 τ → ∞ \tau \to \infty τ 时,自相关函数趋向 E [ x ] 2 \mathbb{E}[x]^2 E[x]2,这意味着信号失去相关性,两个时间点的信号之间不再有关联。

2.3. 图中的具体说明

在图中,你可以看到:

  • τ = 0 \tau = 0 τ=0 时,自相关函数 R x ( 0 ) R_x(0) Rx(0) 达到了最大值,表示信号在同一时刻的自相关性最强,等于信号的总功率。
  • 随着 τ \tau τ 增大,自相关函数开始衰减,表示不同时间点之间的相关性减弱。这就是自相关函数如何随着时间差的增大而衰减的表现。
  • τ → ∞ \tau \to \infty τ 时,自相关函数趋向 E [ x ] 2 \mathbb{E}[x]^2 E[x]2,表示信号在非常远的时间点之间变得不相关,只剩下直流成分(DC Power)。

这一过程中,平稳性保证了自相关函数只依赖于时间差 τ \tau τ,使得分析和计算变得更加简单。

3. 为什么期望值分开写?

τ → ∞ \tau \to \infty τ 时,信号在两个不同时间点 t 1 t_1 t1 t 1 + τ t_1 + \tau t1+τ 处不相关,因此期望值可以分解为:

E [ x ( t 1 ) x ( t 1 + τ ) ] → E [ x ( t 1 ) ] E [ x ( t 1 + τ ) ] \mathbb{E}[x(t_1) x(t_1 + \tau)] \to \mathbb{E}[x(t_1)] \mathbb{E}[x(t_1 + \tau)] E[x(t1)x(t1+τ)]E[x(t1)]E[x(t1+τ)]

这意味着,随着 τ → ∞ \tau \to \infty τ,我们假设信号之间的相关性趋于零,信号在两个时间点的期望值是独立的。因此,期望值分开写是因为在不相关的情况下,两个时刻的信号变得独立。

对于平稳过程,两个时间点的期望值是相同的,即 E [ x ( t 1 ) ] = E [ x ( t 1 + τ ) ] = ⟨ x ⟩ \mathbb{E}[x(t_1)] = \mathbb{E}[x(t_1 + \tau)] = \langle x \rangle E[x(t1)]=E[x(t1+τ)]=x。因此:

R x ( ∞ ) = E [ x ] 2 = ⟨ x ⟩ 2 R_x(\infty) = \mathbb{E}[x]^2 = \langle x \rangle^2 Rx()=E[x]2=x2

总结:

  • Uncorrelated:当 τ → ∞ \tau \to \infty τ 时,信号在不同时间点变得不相关,期望值分解为两个独立的期望值乘积。
  • Stationary:平稳过程的特性是期望值和自相关函数只依赖时间差 τ \tau τ,与具体时间无关。因此,期望值 E [ x ( t 1 ) ] \mathbb{E}[x(t_1)] E[x(t1)] E [ x ( ∞ ) ] \mathbb{E}[x(\infty)] E[x()] 是相同的。
  • 期望值分开写:当信号不相关时,期望值分解为两个独立期望值的乘积,这说明随着时间的推移,信号之间的相关性逐渐消失。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值