动态调整学习率

这个算法是关于如何动态调整步长(step size,通常也称为学习率 η \eta η)以达到更稳定和高效的优化过程。通过逐步调节步长,可以避免学习率过大导致的不稳定性,也可以加速收敛过程。

背景:学习率的重要性

学习率 η \eta η 是梯度下降等优化算法中的一个重要参数。合适的学习率可以加快模型的收敛速度,而不合适的学习率可能会导致以下两种问题:

  • 学习率太小:更新步幅太小,导致优化过程非常慢,需要很多次迭代才能达到最优解。
  • 学习率太大:更新步幅太大,可能导致优化过程不稳定,出现震荡或直接错过最优解。

因此,这个算法旨在动态调整学习率,根据误差的变化来增大或减小步长,使得优化过程更稳定、高效。

动态调整学习率的优化算法

以下是算法的步骤及其详细解释:

1. 初始化参数 w w w 和学习率 η \eta η
w ← initialisation

首先,我们需要对参数 w w w 进行初始化,可以是随机值或者某些默认值。学习率 η \eta η 也是一个初始值,通常选择一个适中的值(比如 0.01 0.01 0.01 0.1 0.1 0.1),用于控制更新步幅。

2. 进入循环,直到误差函数 L ( w ) L(w) L(w) 小于停止误差 ϵ \epsilon ϵ
while L(w) > 𝜖 do

我们设置一个误差阈值 ϵ \epsilon ϵ,当误差函数 L ( w ) L(w) L(w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值