这个算法是关于如何动态调整步长(step size,通常也称为学习率 η \eta η)以达到更稳定和高效的优化过程。通过逐步调节步长,可以避免学习率过大导致的不稳定性,也可以加速收敛过程。
背景:学习率的重要性
学习率 η \eta η 是梯度下降等优化算法中的一个重要参数。合适的学习率可以加快模型的收敛速度,而不合适的学习率可能会导致以下两种问题:
- 学习率太小:更新步幅太小,导致优化过程非常慢,需要很多次迭代才能达到最优解。
- 学习率太大:更新步幅太大,可能导致优化过程不稳定,出现震荡或直接错过最优解。
因此,这个算法旨在动态调整学习率,根据误差的变化来增大或减小步长,使得优化过程更稳定、高效。
动态调整学习率的优化算法
以下是算法的步骤及其详细解释:
1. 初始化参数 w w w 和学习率 η \eta η
w ← initialisation
首先,我们需要对参数 w w w 进行初始化,可以是随机值或者某些默认值。学习率 η \eta η 也是一个初始值,通常选择一个适中的值(比如 0.01 0.01 0.01 或 0.1 0.1 0.1),用于控制更新步幅。
2. 进入循环,直到误差函数 L ( w ) L(w) L(w) 小于停止误差 ϵ \epsilon ϵ
while L(w) > 𝜖 do
我们设置一个误差阈值 ϵ \epsilon ϵ,当误差函数 L ( w ) L(w) L(w