混叠(aliasing)是数字信号处理中的一个核心概念,它发生在降低采样率(即降采样) 时,如果处理不当,高频信号会混入低频信号中,导致失真。
1. 采样率和奈奎斯特定理
-
采样率(Sampling Rate):信号每秒被采集的次数,单位是赫兹(Hz)。
例如,采样率为 44.1 kHz,表示每秒对信号采集 44100 次。 -
奈奎斯特频率(Nyquist Frequency):采样率的一半,定义为信号可以被准确表示的最高频率。
- 如果采样率是 f s f_s fs,那么奈奎斯特频率为 f s / 2 f_s / 2 fs/2。
- 超过奈奎斯特频率的信号会无法准确表示,这种现象就是混叠。
奈奎斯特定理:
- 如果信号中包含的频率分量超过奈奎斯特频率,这些分量会以错误的方式“折叠”到较低频率范围,产生混叠。
2. 混叠的概念
假设我们有一个原始信号,频率范围是 0 ∼ 10 0 \sim 10 0∼10 kHz,采样率是 20 kHz(奈奎斯特频率为 10 kHz)。
- 如果直接将采样率降低到 8 kHz(奈奎斯特频率变为 4 kHz),信号中 4 ∼ 10 4 \sim 10 4∼10 kHz 的高频分量将无法正确表示。
- 这些高频分量会“折叠”到低频范围,导致失真。
混叠现象(aliasing)的过程:
- 折叠现象:
- 高频分量会被重新映射到低频:
f alias = ∣ f − n ⋅ f s ∣ f_{\text{alias}} = |f - n \cdot f_s| falias=∣f−n⋅fs∣
其中 n n n 是整数, f s f_s fs 是采样率, f f f 是信号频率。 - 比如一个信号频率 f = 6 f = 6 f=6 kHz,在采样率降到 8 kHz 时会被折叠到 f alias = ∣ 6 − 8 ∣ = 2 f_{\text{alias}} = |6 - 8| = 2 falias=∣6−8∣=2 kHz。
- 高频分量会被重新映射到低频:
- 失真表现:
- 折叠后的高频信号会混入低频部分,导致失真和错误的频率成分。
3. 如何避免混叠?
在降低采样率之前,需要对信号进行抗混叠处理。最常见的方法是使用低通滤波器去除高频分量。
步骤:
- 设计低通滤波器:
- 截止频率设置为新采样率的奈奎斯特频率(即新采样率的一半)。
- 例如,将采样率降到 8 kHz,奈奎斯特频率是 4 kHz,那么低通滤波器的截止频率应该是 4 kHz。
- 滤除高频信号:
- 低通滤波器将信号中高于 4 kHz 的部分衰减至接近 0。
- 降采样:
- 滤波后,信号的频率范围已经符合新采样率的要求,可以安全地降低采样率。
4. 举例说明
假设一个语音信号,原始采样率为 44.1 kHz,频率范围是 0 ∼ 22.05 0 \sim 22.05 0∼22.05 kHz。现在需要降采样到 16 kHz。
问题:
- 降采样后,新奈奎斯特频率为 8 kHz。
- 信号中 8 ∼ 22.05 8 \sim 22.05 8∼22.05 kHz 的频率分量会混叠到 0 ∼ 8 0 \sim 8 0∼8 kHz,造成失真。
解决方案:
- 使用低通滤波器:
- 截止频率设为 8 kHz,去掉高于 8 kHz 的频率分量。
- 降采样:
- 滤波后的信号仅包含 0 ∼ 8 0 \sim 8 0∼8 kHz 的频率成分,可以安全地以 16 kHz 的采样率表示。
5. 图示说明
(1)未滤波直接降采样的混叠:
- 原始信号频谱:
0 ∼ 22.05 0 \sim 22.05 0∼22.05 kHz。 - 降采样后:
8 ∼ 22.05 8 \sim 22.05 8∼22.05 kHz 的高频成分会折叠到低频,造成信号失真。
(2)经过滤波器处理的降采样:
- 原始信号频谱:
0 ∼ 22.05 0 \sim 22.05 0∼22.05 kHz。 - 低通滤波后:
剩余 0 ∼ 8 0 \sim 8 0∼8 kHz 的频率分量。 - 降采样:
没有混叠,信号保持清晰。
6. 总结
混叠发生在降采样时,因为高频信号无法在新采样率下正确表示。通过低通滤波器将高频信号去除,可以避免混叠。整个过程确保降采样后的信号依然清晰、不失真。