数字信号处理 --- 信号的采样和奇妙的混叠(Aliasing) 贰

混叠频率的计算

     上次我们讲到如果混叠没能成功避免,那么混叠后的信号就会偷偷混入重建后的信号。那么这个经过伪装的“伪装信号”的频率是多少呢?他会出现在频谱中的哪里呢?这是可以通过精确计算得到的。

     先从奥本海姆的信号与系统中的一幅插图说起,奥本海姆老师要通过这幅图说明混叠,所绘制的波形为下图公式所示的余弦函数。

     图中的ωo表示原始信号的频率,ωs表示采样频率。这幅图一共有四张,前两张图的采样频率分别是原始频率的6倍3倍,所以重建后的信号并没有出现混叠如下图所示

(点击图像放大)

        由于我很喜欢这个例子,所以我就用matlab把它仿真了一下。

        此处,我令第一个连续余弦函数信号(下图中第一行)的原始频率ωo为10Hz, 则按照图中的比例对应的采样频率ωs应当为60Hz,。此时采样频率为原始信号频率的6倍

        然后,我再令第二个连续余弦函数信号(下图中第三行)的原始频率ωo为20Hz, 同样的,按照图中给出的比例采样频率应为原始信号频率的3倍,即60Hz。(箭头没能仿真成功,嘻嘻)

        注:这里我稍微说一下这两个信号的原始频率是怎么选出来。因为,书中确实没找到实际数值,所以我这里所设置的10Hz和20Hz是我自己试出来。也就是说我为了让matlab画出来的图和教科书中一样,通过不断地尝试试出来。不过有一点可以肯定的是,单从教科书给出的图像来看,第二个余弦函数的原始频率确实要大于第一个余弦函数的原始频率。

(点击图像放大)

Matlab代码如下:

%CSDN:by J27 copyright!
%% sampling freqency 6 times continous signal  
Fs = 60;                        % Sampling Freq. 
Fo = Fs/6;                      % freq. of continous Signal  
T = 1/Fs;                       % sampling period
tmin = -pi/15.7;                % lower limit of time vector
tmax = pi/15.7;                 % upper limit of time vector
Bins = 400;                     % Number of Bins
t = linspace(tmin, tmax, Bins); % time space vector
nmin = ceil(tmin / T);          % lower limit of num vector
nmax = floor(tmax / T);         % upper limit of num vector
n = nmin:nmax;                  % discrete space vector

CosineSignal = cos(2.*pi.*Fo.*t);
SampleSignal = cos(2.*pi.*Fo.*n.*T);

subplot(4,1,1)
plot(t,CosineSignal,'k','LineWidth',2);
title('\fontsize{35}Sampling freqency 6 times continous signal. i.e. Proper sampling');
hold on
stem(n*T,SampleSignal,'r','filled','LineWidth',2)
hold off

subplot(4,1,2)
p
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值