文章目录
之前我们学习过二叉查找树,发现它的查询效率比单纯的链表和数组的查询效率要高很多,大部分情况下,确实是这样的,但不幸的是,在最坏情况下,二叉查找树的性能还是很糟糕。例如我们依次往二叉查找树中插入9,8,7,6,5,4,3,2,1这9个数据,那么最终构造出来的树是长得下面这个样子:
我们会发现,如果我们要查找1这个元素,查找的效率依旧会很低。效率低的原因在于这个树并不平衡,全部是向左边分支,如果我们有一种方法,能够不受插入数据的影响,让生成的树都像完全二叉树那样,那么即使在最坏情况下,查找的效率依旧会很好。
一、2-3 查找树
为了保证查找树的平衡性,我们需要一些灵活性,因此在这里我们允许树中的一个结点保存多个键。确切的说,我们将一棵标准的二叉查找树中的结点称为2-结点(含有一个键和两条链),而现在我们引入3-结点,它含有两个键和三条链。2-结点和3-结点中的每条链都对应着其中保存的键所分割产生的一个区间。
1.1 2-3查找树的定义
一棵2-3查找树要么为空,要么满足满足下面两个要求:
- 2-结点:
含有一个键(及其对应的值)和两条链,左链接指向2-3树中的键都小于该结点,右链接指向的2-3树中的键都大于该结点。 - 3-结点:
含有两个键(及其对应的值)和三条链,左链接指向的2-3树中的键都小于该结点,中链接指向的2-3树中的键都位于该结点的两个键之间,右链接指向的2-3树中的键都大于该结点。
1.2 查找
将二叉查找树的查找算法一般化我们就能够直接得到2-3树的查找算法。要判断一个键是否在树中,我们先将它和根结点中的键比较。如果它和其中任意一个相等,查找命中;否则我们就根据比较的结果找到指向相应区间的连接,并在其指向的子树中递归地继续查找。如果这个是空链接,查找未命中。
1.3 插入
- 向2-结点中插入新键
往2-3树中插入元素和往二叉查找树中插入元素一样,首先要进行查找,然后将节点挂到未找到的节点上。2-3树之所以能够保证在最差的情况下的效率的原因在于其插入之后仍然能够保持平衡状态。如果查找后未找到的节点是一个2-结点,那么很容易,我们只需要将新的元素放到这个2-结点里面使其变成一个3-结点即可。但是如果查找的节点结束于一个3-结点,那么可能有点麻烦。
- 向一棵只含有一个3-结点的树中插入新键
假设2-3树只包含一个3-结点,这个结点有两个键,没有空间来插入第三个键了,最自然的方式是我们假设这个结点能存放三个元素,暂时使其变成一个4-结点,同时他包含四条链接。然后,我们将这个4-结点的中间元素提升,左边的键作为其左子结点,右边的键作为其右子结点。插入完成,变为平衡2-3查找树,树的高度从0变为1。
- 向一个父结点为2-结点的3-结点中插入新键
和上面的情况一样一样,我们也可以将新的元素插入到3-结点中,使其成为一个临时的4-结点,然后,将该结点中的中间元素提升到父结点即2-结点中,使其父结点成为一个3-结点,然后将左右结点分别挂在这个3-结点的恰当位置。
- 向一个父结点为3-结点的3-结点中插入新键
当我们插入的结点是3-结点的时候,我们将该结点拆分,中间元素提升至父结点,但是此时父结点是一个3-结点,插入之后,父结点变成了4-结点,然后继续将中间元素提升至其父结点,直至遇到一个父结点是2-结点,然后将其变为3-结点,不需要继续进行拆分。
- 分解根结点
当插入结点到根结点的路径上全部是3-结点的时候,最终我们的根结点会编程一个临时的4-结点,此时,就需要将根结点拆分为两个2-结点,树的高度加1。
1.4 2-3树的性质
通过对2-3树插入操作的分析,我们发现在插入的时候,2-3树需要做一些局部的变换来保持2-3树的平衡。
一棵完全平衡的2-3树具有以下性质:
- 任意空链接到根结点的路径长度都是相等的。
- 4-结点变换为3-结点时,树的高度不会发生变化,只有当根结点是临时的4-结点,分解根结点时,树高+1。
- 2-3树与普通二叉查找树最大的区别在于,普通的二叉查找树是自顶向下生长,而2-3树是自底向上生长。
二、红黑树
我们前面介绍了2-3树,可以看到2-3树能保证在插入元素之后,树依然保持平衡状态,它的最坏情况下所有子结点都是2-结点,树的高度为lgN,相比于我们普通的二叉查找树,最坏情况下树的高度为N,确实保证了最坏情况下的时间复杂度,但是2-3树实现起来过于复杂,所以我们介绍一种2-3树思想的简单实现:红黑树。
红黑树主要是对2-3树进行编码,红黑树背后的基本思想是用标准的二叉查找树(完全由2-结点构成)和
一些额外的信息(替换3-结点)来表示2-3树。我们将树中的链接分为两种类型:
红链接:将两个2-结点连接起来构成一个3-结点; 黑链接:则是2-3树中的普通链接。
确切的说,我们将3-结点表示为由由一条左斜的红色链接(两个2-结点其中之一是另一个的左子结点)相连的两个2-结点。这种表示法的一个优点是,我们无需修改就可以直接使用标准的二叉查找树的get方法。
2.1 红黑树的定义
红黑树是含有红黑链接并满足下列条件的二叉查找树:
- 红链接均为左链接;
- 没有任何一个结点同时和两条红链接相连;
- 该树是完美黑色平衡的,即任意空链接到根结点的路径上的黑链接数量相同;
下面是红黑树与2-3树的对应关系:
红黑树的结点类:
private class Node<Key,Value>{
//存储键
public Key key;
//存储值
private Value value;
//记录左子结点
public Node left;
//记录右子结点
public Node right;
//由其父结点指向它的链接的颜色
public boolean color;
public Node(Key key, Value value, Node left,Node right,boolean color) {
this.key = key;
this.value = value;
this.left = left;
this.right = right;
this.color = color;
}
}
2.2 平衡化
在对红黑树进行一些增删改查的操作后,很有可能会出现红色的右链接或者两条连续红色的链接,而这些都不满足红黑树的定义,所以我们需要对这些情况通过旋转进行修复,让红黑树保持平衡。
-
左旋
当某个结点的左子结点为黑色,右子结点为红色,此时需要左旋。
前提:当前结点为h,它的右子结点为x;
左旋过程:- 让x的左子结点变为h的右子结点:h.right=x.left;
- 让h成为x的左子结点:x.left=h;
- 让h的color属性变为x的color属性值:x.color=h.color;
- 让h的color属性变为RED:h.color=true;
-
右旋
当某个结点的左子结点是红色,且左子结点的左子结点也是红色,需要右旋
前提:当前结点为h,它的左子结点为x;
右旋过程:- 让x的右子结点成为h的左子结点:h.left = x.right;
- 让h成为x的右子结点:x.right=h;
- 让x的color变为h的color属性值:x.color = h.color;
- 让h的color为RED;
2.3 颜色反转
当一个结点的左子结点和右子结点的color都为RED时,也就是出现了临时的4-结点,此时只需要把左子结点和右子结点的颜色变为BLACK,同时让当前结点的颜色变为RED即可。
根结点的颜色总是黑色,由于根结点不存在父结点,所以每次插入操作后,我们都需要把根结点的颜色设置为黑色。
向树底部的3-结点插入新键
红黑树的代码实现
public class RedBlackTree<Key extends Comparable<Key>, Value> {
//根节点
private Node root;
//记录树中元素的个数
private int N;
//红色链接
private static final boolean RED = true;
//黑色链接
private static final boolean BLACK = false;
//结点类
private class Node {
//存储键
public Key key;
//存储值
private Value value;
//记录左子结点
public Node left;
//记录右子结点
public Node right;
//由其父结点指向它的链接的颜色
public boolean color;
public Node(Key key, Value value, Node left, Node right, boolean color) {
this.key = key;
this.value = value;
this.left = left;
this.right = right;
this.color = color;
}
}
//获取树中元素的个数
public int size() {
return N;
}
/**
* 判断当前节点的父指向链接是否为红色
*
* @param x
* @return
*/
private boolean isRed(Node x) {
if (x==null){
return false;
}
return x.color==RED;
}
/**
* 左旋转
*
* @param h
* @return
*/
private Node rotateLeft(Node h) {
//找到h结点的右子结点x
Node x = h.right;
//找到x结点的左子结点,让x结点的左子结点称为h结点的右子结点
h.right = x.left;
//让h结点称为x结点的左子结点
x.left = h;
//让x结点的color属性变为h结点的color属性
x.color = h.color;
//让h结点的color属性变为RED
h.color = RED;
return x;
}
/**
* 右旋
*
* @param h
* @return
*/
private Node rotateRight(Node h) {
//找到h结点的左子结点 x
Node x = h.left;
//让x结点的右子结点成为h结点的左子结点
h.left = x.right;
//让h结点成为x结点的右子结点
x.right = h;
//让x结点的color属性变为h结点的color属性
x.color = h.color;
//让h结点的color属性为RED
h.color = RED;
return x;
}
/**
* 颜色反转,相当于完成拆分4-节点
*
* @param h
*/
private void flipColors(Node h) {
//当前结点变为红色
h.color = RED;
//左子结点和右子结点变为黑色
h.left.color=BLACK;
h.right.color = BLACK;
}
/**
* 在整个树上完成插入操作
*
* @param key
* @param val
*/
public void put(Key key, Value val) {
root = put(root,key,val);
//根结点的颜色总是黑色
root.color = RED;
}
/**
* 在指定树中,完成插入操作,并返回添加元素后新的树
*
* @param h
* @param key
* @param val
*/
private Node put(Node h, Key key, Value val) {
//判断h是否为空,如果为空则直接返回一个红色的结点就可以了
if (h == null){
//数量+1
N++;
return new Node(key,val,null,null,RED);
}
//比较h结点的键和key的大小
int cmp = key.compareTo(h.key);
if (cmp<0){
//继续往左
h.left = put(h.left,key,val);
}else if (cmp>0){
//继续往右
h.right = put(h.right,key,val);
}else{
//发生值的替换
h.value = val;
}
//进行左旋:当当前结点h的左子结点为黑色,右子结点为红色,需要左旋
if (isRed(h.right) && !isRed(h.left)){
h = rotateLeft(h);
}
//进行右旋:当当前结点h的左子结点和左子结点的左子结点都为红色,需要右旋
if (isRed(h.left) && isRed(h.left.left)){
rotateRight(h);
}
//颜色反转:当前结点的左子结点和右子结点都为红色时,需要颜色反转
if (isRed(h.left) && isRed(h.right)){
flipColors(h);
}
return h;
}
//根据key,从树中找出对应的值
public Value get(Key key) {
return get(root,key);
}
//从指定的树x中,查找key对应的值
public Value get(Node x, Key key) {
if (x == null){
return null;
}
//比较x结点的键和key的大小
int cmp = key.compareTo(x.key);
if (cmp<0){
return get(x.left,key);
}else if (cmp>0){
return get(x.right,key);
}else{
return x.value;
}
}
}
三、B树
前面我们已经学习了二叉查找树、2-3树以及它的实现红黑树。2-3树中,一个结点做多能有两个key,它的实现红黑树中使用对链接染色的方式去表达这两个key。接下来我们学习另外一种树型结构B树,这种数据结构中,一个结点允许多于两个key的存在。
B树是一种树状数据结构,它能够存储数据、对其进行排序并允许以O(logn)的时间复杂度进行查找、顺序读取、插入和删除等操作。
3.1 B树的特性
B树中允许一个结点中包含多个key,可以是3个、4个、5个甚至更多,并不确定,需要看具体的实现。现在我们选择一个参数M,来构造一个B树,我们可以把它称作是M阶的B树,那么该树会具有如下特点:
- 每个结点最多有M-1个key,并且以升序排列;
- 每个结点最多能有M个子结点;
- 根结点至少有两个子结点;
在实际应用中B树的阶数一般都比较大(通常大于100),所以,即使存储大量的数据,B树的高度仍然比较小,这样在某些应用场景下,就可以体现出它的优势。
3.2 B树存储数据
若参数M选择为5,那么每个结点最多包含4个键值对,我们以5阶B树为例,看看B树的数据存储。
3.3 B+树
B+树是对B树的一种变形树,它与B树的差异在于:
- 非叶结点仅具有索引作用,也就是说,非叶子结点只存储key,不存储value;
- 树的所有叶结点构成一个有序链表,可以按照key排序的次序遍历全部数据。
3.3.1 B+树存储数据
若参数M选择为5,那么每个结点最多包含4个键值对,我们以5阶B+树为例,看看B+树的数据存储。
3.3.2 B+树和B树的对比
B+ 树的优点在于:
- 由于B+树在非叶子结点上不包含真正的数据,只当做索引使用,因此在内存相同的情况下,能够存放更多的key。
- B+树的叶子结点都是相连的,因此对整棵树的遍历只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。而B树则需要进行每一层的递归遍历。
B树的优点在于:
- 由于B树的每一个节点都包含key和value,因此我们根据key查找value时,只需要找到key所在的位置,就能找到value,但B+树只有叶子结点存储数据,索引每一次查找,都必须一次一次,一直找到树的最大深度处,也就是叶子结点的深度,才能找到value。
3.3.3 B+树在数据库中的应用
在数据库的操作中,查询操作可以说是最频繁的一种操作,因此在设计数据库时,必须要考虑到查询的效率问题,在很多数据库中,都是用到了B+树来提高查询的效率;
在操作数据库时,我们为了提高查询效率,可以基于某张表的某个字段建立索引,就可以提高查询效率,那其实这个索引就是B+树这种数据结构实现的。
-
未建立主键索引查询
执行select * from user where id=18
,需要从第一条数据开始,一直查询到第6条,发现id=18,此时才能查询出目标结果,共需要比较6次; -
建立主键索引查询
执行select * from user where id>=12 and id<=18
,如果有了索引,由于B+树的叶子结点形成了一个有序链表,所以我们只需要找到id为12的叶子结点,按照遍历链表的方式顺序往后查即可,效率非常高。