看视频讲解的时候看评论区说有必要了解一下Fast-R-CNN网络,所以看了一下,觉得有个挺好的:
https://blog.csdn.net/weixin_44936889/article/details/103788908?utm_medium=distribute.pc_relevant.none-task-blog-baidujs_title-1&spm=1001.2101.3001.4242
Region Proposal Network(RPN层)
ROI(Region of Interest, 感兴趣区域)
t代表target,即回归值
1.利用有效特征层获得建议框
特征层对图像进行网格的划分之后,每个网格的先验数量(anchors_per_location)是3,所以卷积后的结果就相当于包含了特征层对应网格上的每个网格内部是否真实的包含物体,后面我们进行reshape到维度是2,2是一个判断网络,即判断先验框内部是否包含物体第二个维度是先验框的调整参数
share层有一个anchors_per_location*4的操作,这就相当于每个网格先验框的调整参数,用这个层做reshape操作,我们可以获得batch_size, num_anchors(每个网格的先验数量),4shape的内容,
特征层传入到网络rpn( p)中,(logits),(classes)softmax,(bbox)先验框的辗转参数 ()遍历之后将数据放到列表中,对三个列表进行堆叠,即获得先验框的所有种类,即先验框内是否包含物体和调整参数
3.Mask-R-CNN的先验框:就是一些认为规定好的区域,内部可能包含物体可能不包含物体。
get_anchors获得先验框