机器学习7——线性回归

本文详细介绍了线性回归的基本概念、一般表达式、实际应用以及损失函数。重点探讨了最小二乘法和梯度下降法两种求解 w 和 b 的方法,并深入讨论了过拟合和欠拟合的解决策略,包括L1、L2正则化以及弹性网络。同时,提到了局部加权线性回归作为欠拟合的解决方案。
摘要由CSDN通过智能技术生成

Liner Regression

1. 基本概念

  • 线性
      两个变量之间的关系是一次函数关系,图像是直线,成正比例(反比例不是),叫做线性。

  • 非线性
      两个变量之间的关系不是一次函数关系的—,图象不是直线,叫做非线性。

  • 回归
      人们在测量事物的时候因为客观条件有限,求得的都是测量值,而不是事物真实的值。
      为了求得真实值,无限次的进行测量,最后通过这些测量数据计算回归到真实值

  • 线性回归
      线性回归是回归问题的一种,线性回归假设目标值(y)与特征(x)之间线性相关(满足多元一次方程)。
      我们通过构建损失函数,来求解损失函数小时的参数 w 和 b。

2. 一般表达式

y = w x + b y = wx + b y=wx+b
w叫做x的系数
b叫做偏置项。

3. 实际用处

  • 预测
      寻找到数据与数据之间的规律所在,从而就可以模拟出结果,也就是对结果进行预测
      例如:对房价的预测、判断信用评价、电影票房预估等。

4. 损失函数(Loss Function)之均方误差(MSE)

  • MSE(均方误差)
    1-英文名
      Mean Square Error
      又叫:二次损失
    2-概念
      均方误差,指模型预测值f(x),与样本真实值y。之间的差值的平方的平均值 。
    3-公式
    M S E = 1 n ∑ i = 1 n ( f ( x i ) − y i ) 2 MSE = \frac{1}{n}\sum_{i=1}^n(f(x_i) - y_i )^2 MSE=n1i=1n(f(xi)yi)2
    n: 样本个数
    y i y_i yi: 真实值
    f ( x i ) f(x_i) f(xi): 预测值

  • 核心目标优化式
    1-概念
      求解最佳参数,需要一个标准来对结果进行衡量,为此我们需要定量化一个目标函数式,使得计算机可以在求解过程中不断地优化。
    2-推导
    y = w x + b y = wx + b y=wx+b代入 M S E = 1 n ∑ i = 1 n ( f ( x i ) − y i ) 2 MSE = \frac{1}{n}\sum_{i=1}^n(f(x_i) - y_i )^2 MSE=n1i=1n(f(xi)yi)2

    M S E ( w , b ) = 1 n ∑ i = 1 n ( w x i + b − y i ) 2 MSE(w, b) = \frac{1}{n}\sum_{i=1}^n(wx_i + b - y_i)^2 MSE(w,b)=n1i=1n(wxi+byi)2
    最终,1/n不影响最小值,省略1/n,便于计算(这个公式很重要)
    得,平方损失函数(squared loss)
    L ( w , b ) = ∑ i = 1 n ( w x i + b − y i ) 2 L(w, b) = \sum_{i=1}^n(wx_i + b - y_i)^2 L(w,b)=i=1n(wxi+byi)2
    任务是:求解最小化L时w和b的值。
    在这里插入图片描述

5. 计算 w 和 b

5.1 方法一:最小二乘法(least square method)

核心:我们通过构建损失函数,来求解损失函数最小时的参数 w 和 b。

1-回顾
  中学有一种题,给你很多数据(组成表格),要你求解,缺失的部分或进行判断。我们就用到了最小二乘法。公式我们一般都是直接背下来直接用。例如:

直线
y = k x + b y = kx + b y=kx+b
k ^ \hat{k} k^
k ^ = ∑ i = 1 n x i y i − n x ˉ y ˉ ∑ i = 1 n x i 2 − n x ˉ 2 \hat{k} = \frac{\sum_{i=1}^nx_iy_i - n\bar{x}\bar{y}}{\sum_{i=1}^nx_i^2 - n\bar{x}^2} k^=i=1nxi2nxˉ2i=1nxiyinxˉyˉ

b ^ \hat{b} b^
b ^ = y ˉ − k ^ x ˉ \hat{b} = \bar{y} - \hat{k}\bar{x} b^=yˉk^xˉ

在这里插入图片描述

2-线性回归中计算w和b:求偏导
注意
( 注 意 : ∑ i = 1 n x i = n ∑ i = 1 n x i n = n x ˉ ) (注意:\sum_{i=1}^nx_i = n\frac{\sum_{i=1}^nx_i }{n}=n\bar{x}) (i=1nxi=nni=1nxi=nxˉ)

L ( w , b ) L(w,b) L(w,b) w w w的偏导。

L ( w , b ) w ′ = ∂ L ∂ w = ∑ i = 1 n [ ( w x i + b − y i ) 2 ] w ′ = 2 ∑ i = 1 n ( w x i + b − y i ) ∗ ( x i w + b − y i ) w ′ = 2 ∑ i = 1 n ( w x i + b − y i ) ∗ x i = 2 [ w ∑ i = 1 n x i 2 + ∑ i = 1 n x i ( b − y i ) ] = 2 [ w ∑ i = 1 n x i 2 − ∑ i = 1 n x i ( y i − b ) ] \begin{aligned} L(w,b)'_w &= \frac{\partial L}{\partial w}\\[6pt] &=\sum_{i=1}^n[(wx_i+b-y_i)^2]'_w\\[6pt] &=2\sum_{i=1}^n(wx_i+b-y_i)*(x_iw+b-y_i)'_w\\[6pt] &=2\sum_{i=1}^n(wx_i+b-y_i)*x_i\\[6pt] &=2[w\sum_{i=1}^nx_i^2+\sum_{i=1}^nx_i(b-y_i)]\\[6pt] &=2[w\sum_{i=1}^nx_i^2-\sum_{i=1}^nx_i(y_i-b)] \end{aligned} \\[6pt] L(w,b)w=wL=i=1n[(wxi+byi)2]w=2i=1n(wxi+byi)(xiw+byi)w=2i=1n(wxi+byi)xi=2[wi=1nxi2+i=1nxi(byi)]=2[wi=1nxi2i=1nxi(yib)]

L ( w , b ) L(w,b) L(w,b)求b的偏导。

L ( w , b ) b ′ = ∂ L ∂ b = [ ∑ i = 1 n ( w x i + b − y i ) 2 ] b ′ = 2 ∑ i = 1 n ( w x i + b − y i ) ∗ ( ∑ i = 1 n x i w + b − ∑ i = 1 n y i ) b ′ = 2 ∑ i = 1 n ( w x i + b − y i ) = 2 [ n b − ∑ i = 1 n ( y i

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姜满月

鼓励,鼓励,更加努力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值