在这段代码中,并没有包含感知机算法的训练过程,因此没有得到最终的权重向量 W。
这段代码中的目标是生成一个线性可分的训练数据集,并根据预先定义的权重向量 W,通过计算 X.dot(W) 得到目标值 y。这里的 W 只是作为一个预定义的权重向量,并没有进行训练或调整。
在感知机算法中,训练过程涉及通过迭代和更新权重向量来优化分类器,以找到最佳的权重系数。这个训练过程通常会在一个循环中进行,根据样本的分类情况不断调整权重向量,直到达到收敛条件。
如果你想训练感知机算法并得到最终的权重向量 W,你需要实现感知机算法的训练过程。在训练过程中,根据样本的分类情况和预测结果,通过迭代和更新权重向量来优化分类器。最终,当训练收敛时,得到的权重向量即为最终的结果。
你可以根据感知机算法的原理和训练过程,结合你的具体需求,编写相应的代码来实现训练过程并得到最终的权重向量。