图论之负环问题

这篇博客介绍了如何使用SPFA算法检测图中的负环,并通过实例展示了在‘虫洞’、‘观光奶牛’和‘单词环’问题中的应用。对于‘观光奶牛’问题,博主采用了01分数规划和二分查找的方法。在‘单词环’问题中,为了避免空间爆炸,采取了特殊建图策略。每个问题都提供了完整的C++代码实现。
摘要由CSDN通过智能技术生成

一.模板

1.spfa判断负环

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 100010;
int e[N],ne[N],w[N],h[N],idx=0;
bool st[N];
int n,m;
int dist[N];
int cnt[N];
void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
bool spfa()
{
    queue<int>q;
    for(int i=1;i<=n;i++)
    {
        q.push(i);
        st[i]=true;
    }
    while(q.size())
    {
        auto t=q.front();
        q.pop();
        st[t]=false;
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>dist[t]+w[i])
            {
                cnt[j]=cnt[t]+1;
                if(cnt[j]>=n)return true;
                dist[j]=dist[t]+w[i];
                if(!st[j])
                {
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    return false;
}
int main()
{
    cin>>n>>m;
    int a,b,c;
    memset(h,-1,sizeof h);
    while (m -- )
    {
        cin>>a>>b>>c;
        add(a,b,c);
    }
    if(spfa())cout<<"Yes"<<endl;
    else cout<<"No"<<endl;
}


二.练习题

1.虫洞

模板题,套用模板即可
链接


#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;

const int N = 510,M=5410;

int h[N],e[M],ne[M],w[M],idx=0;
int dist[N];
int n,m1,m2;
int cnt[N];
bool st[N];

void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
bool spfa()
{
    memset(dist,0,sizeof dist);
    memset(cnt,0,sizeof cnt);
    memset(st,0,sizeof st);
    queue<int>q;
    for(int i=1;i<=n;i++)
    {
        q.push(i);
        st[i]=true;
    }
    while(q.size())
    {
        auto t=q.front();
        q.pop();
        st[t]=false;
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>dist[t]+w[i])
            {
                cnt[j]=cnt[t]+1;
                if(cnt[j]>=n)return true;
                dist[j]=dist[t]+w[i];
                if(!st[j])
                {
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    return false;
}

int main()
{
    int T;
    int a,b,c;
    cin>>T;
    while(T--)
    {
        memset(h,-1,sizeof h);
        idx=0;
        cin>>n>>m1>>m2;
        for(int i=0;i<m1;i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            add(a,b,c);
            add(b,a,c);
        }
        for(int i=0;i<m2;i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            add(a,b,-c);
        }
        if(spfa())cout<<"YES"<<endl;
        else cout<<"NO"<<endl;
    }
}

2.观光奶牛

链接

寻找正环+01分数规划+二分

图论中a的和除以b的和的问题称为01分数规划
一般用二分来解决

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;

const int N = 1010,M=5010;

int h[N],e[M],ne[M],wb[M],idx=0;
bool st[N];
int n,m;
double dist[N];
int cnt[N];
int wd[N];
void add(int a,int b,int c)
{
    e[idx]=b,wb[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
bool check(double mid)
{
    memset(dist,0,sizeof dist);
    memset(st, 0, sizeof st);
    memset(cnt,0,sizeof cnt);
    queue<int>q;
    for(int i=1;i<=n;i++)
    {
        q.push(i);
        st[i]=true;
    }
    while(q.size())
    {
        auto t=q.front();
        q.pop();
        st[t]=false;
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]<dist[t]+wd[t]-wb[i]*mid)
            {
                cnt[j]=cnt[t]+1;
                
                if(cnt[j]>=n)return true;
                dist[j]=dist[t]+wd[t]-wb[i]*mid;
                if(!st[j])
                {
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    return false;
}

int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)cin>>wd[i];
    memset(h,-1,sizeof h);
    for(int i=0;i<m;i++)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    double l=0,r=1010;
    
    while(r-l>1e-4)
    {
        double mid=(l+r)*1.0/2;
        if(check(mid))l=mid;
        else r=mid;
    }
    printf("%.2lf\n",l);
}

3.单词环

链接
建图+01分数规划
这题不能按常规思路建图不然全是aaaaaa的情况下会爆空间
这题还有玄学经验值,在遍历很多次后很大可能性有正环,直接返回true

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 700,M=100010;
int e[M],ne[M],w[M],h[N],idx=0;
bool st[N];
int n,m;
double dist[N];
int cnt[N];
void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
bool check(double mid)
{
    memset(st,0,sizeof st);
    //memset(dist,0,sizeof dist);
    memset(cnt,0,sizeof cnt);
    queue<int>q;
    for(int i=0;i<676;i++)
    {
        q.push(i);
        st[i]=true;
    }
    int idxx=0;
    while(q.size())
    {
        auto t=q.front();
        q.pop();
        st[t]=false;
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]<dist[t]+w[i]-mid)
            {
                dist[j]=dist[t]+w[i]-mid;
                cnt[j]=cnt[t]+1;
                if(++idxx>10000)return true;
                if(cnt[j]>=N)return true;
                
                if(!st[j])
                {
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    return false;
}
int main()
{
    char str[1010];
    while(scanf("%d",&n),n)
    {
        memset(h,-1,sizeof h);
        idx=0;
        
        for(int i=0;i<n;i++){
            scanf("%s",str);
            int len=strlen(str);
            if(len>=2){
                int left=(str[0]-'a')*26+str[1]-'a';
                int right=(str[len-2]-'a')*26+str[len-1]-'a';
                add(left,right,len);
            }
        }
        if(!check(0))cout<<"No solution"<<endl;
        else
        {
            double l=0,r=1000.0;
            while(r-l>1e-4)
            {
                double mid=(l+r)/2;
                if(check(mid))l=mid;
                else r=mid;
            }
            cout<<r<<endl;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_WAWA鱼_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值