一.模板
1.spfa判断负环
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 100010;
int e[N],ne[N],w[N],h[N],idx=0;
bool st[N];
int n,m;
int dist[N];
int cnt[N];
void add(int a,int b,int c)
{
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
bool spfa()
{
queue<int>q;
for(int i=1;i<=n;i++)
{
q.push(i);
st[i]=true;
}
while(q.size())
{
auto t=q.front();
q.pop();
st[t]=false;
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(dist[j]>dist[t]+w[i])
{
cnt[j]=cnt[t]+1;
if(cnt[j]>=n)return true;
dist[j]=dist[t]+w[i];
if(!st[j])
{
q.push(j);
st[j]=true;
}
}
}
}
return false;
}
int main()
{
cin>>n>>m;
int a,b,c;
memset(h,-1,sizeof h);
while (m -- )
{
cin>>a>>b>>c;
add(a,b,c);
}
if(spfa())cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
二.练习题
1.虫洞
模板题,套用模板即可
链接
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 510,M=5410;
int h[N],e[M],ne[M],w[M],idx=0;
int dist[N];
int n,m1,m2;
int cnt[N];
bool st[N];
void add(int a,int b,int c)
{
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
bool spfa()
{
memset(dist,0,sizeof dist);
memset(cnt,0,sizeof cnt);
memset(st,0,sizeof st);
queue<int>q;
for(int i=1;i<=n;i++)
{
q.push(i);
st[i]=true;
}
while(q.size())
{
auto t=q.front();
q.pop();
st[t]=false;
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(dist[j]>dist[t]+w[i])
{
cnt[j]=cnt[t]+1;
if(cnt[j]>=n)return true;
dist[j]=dist[t]+w[i];
if(!st[j])
{
q.push(j);
st[j]=true;
}
}
}
}
return false;
}
int main()
{
int T;
int a,b,c;
cin>>T;
while(T--)
{
memset(h,-1,sizeof h);
idx=0;
cin>>n>>m1>>m2;
for(int i=0;i<m1;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
add(b,a,c);
}
for(int i=0;i<m2;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,-c);
}
if(spfa())cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
}
2.观光奶牛
寻找正环+01分数规划+二分
图论中a的和除以b的和的问题称为01分数规划
一般用二分来解决
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 1010,M=5010;
int h[N],e[M],ne[M],wb[M],idx=0;
bool st[N];
int n,m;
double dist[N];
int cnt[N];
int wd[N];
void add(int a,int b,int c)
{
e[idx]=b,wb[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
bool check(double mid)
{
memset(dist,0,sizeof dist);
memset(st, 0, sizeof st);
memset(cnt,0,sizeof cnt);
queue<int>q;
for(int i=1;i<=n;i++)
{
q.push(i);
st[i]=true;
}
while(q.size())
{
auto t=q.front();
q.pop();
st[t]=false;
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(dist[j]<dist[t]+wd[t]-wb[i]*mid)
{
cnt[j]=cnt[t]+1;
if(cnt[j]>=n)return true;
dist[j]=dist[t]+wd[t]-wb[i]*mid;
if(!st[j])
{
q.push(j);
st[j]=true;
}
}
}
}
return false;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)cin>>wd[i];
memset(h,-1,sizeof h);
for(int i=0;i<m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
double l=0,r=1010;
while(r-l>1e-4)
{
double mid=(l+r)*1.0/2;
if(check(mid))l=mid;
else r=mid;
}
printf("%.2lf\n",l);
}
3.单词环
链接
建图+01分数规划
这题不能按常规思路建图不然全是aaaaaa的情况下会爆空间
这题还有玄学经验值,在遍历很多次后很大可能性有正环,直接返回true
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 700,M=100010;
int e[M],ne[M],w[M],h[N],idx=0;
bool st[N];
int n,m;
double dist[N];
int cnt[N];
void add(int a,int b,int c)
{
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
bool check(double mid)
{
memset(st,0,sizeof st);
//memset(dist,0,sizeof dist);
memset(cnt,0,sizeof cnt);
queue<int>q;
for(int i=0;i<676;i++)
{
q.push(i);
st[i]=true;
}
int idxx=0;
while(q.size())
{
auto t=q.front();
q.pop();
st[t]=false;
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(dist[j]<dist[t]+w[i]-mid)
{
dist[j]=dist[t]+w[i]-mid;
cnt[j]=cnt[t]+1;
if(++idxx>10000)return true;
if(cnt[j]>=N)return true;
if(!st[j])
{
q.push(j);
st[j]=true;
}
}
}
}
return false;
}
int main()
{
char str[1010];
while(scanf("%d",&n),n)
{
memset(h,-1,sizeof h);
idx=0;
for(int i=0;i<n;i++){
scanf("%s",str);
int len=strlen(str);
if(len>=2){
int left=(str[0]-'a')*26+str[1]-'a';
int right=(str[len-2]-'a')*26+str[len-1]-'a';
add(left,right,len);
}
}
if(!check(0))cout<<"No solution"<<endl;
else
{
double l=0,r=1000.0;
while(r-l>1e-4)
{
double mid=(l+r)/2;
if(check(mid))l=mid;
else r=mid;
}
cout<<r<<endl;
}
}
}