一道dp一下午。。。。
免费馅饼
题目链接
高度为H
,从第一格开始降落,第一格不算,所以首先H--
当馅饼在某一秒末恰好到达游戏者所在的格子中,游戏者就收集到了这块馅饼。
注意恰好这个词,所以当H
不能整除速度v
时,数据没用,读入数据时需要特判去除不能整除v
的数据。
把每个饼落到第一行的总时间记录下来,进行dp运算
阅读本题可以知道,收馅饼的时间是可逆的,可以时间正着来收,也可以倒着来收,因为输出方案要正着输出,所以方便起见,倒着来收馅饼了。
这道题有五个状态转移,因为要输出移动方案,所以时间倒着来写,最后输出中间位置的最大值f[0][W/2+1]
f[i][j]
表示前i
s内,第j
个位置的最大值
f[i][j]
可由f[i+1][j+2]
, f[i+1][j+1]
, f[i+1][j]
, f[i+1][j-1]
, f[i+1][j-2]
五种状态转移而来
最后比较难的是输出方案,因为计算时倒着计算了,所以直接判断每种状态可转移的最大值,就是所走的方案
#include<bits/stdc++.h>
using namespace std;
const int N=1110;
int W,H;
int f[N][N];//前i s 内,第j个位置的最大值
int s;
int get(int i,int j)
{
int ans=0;
for(int k=-2;k<=2;k++)
{
if(f[i+1][j+k]>ans&&j+k>0)
{
ans=f[i+1][j+k];
s=k;
}
}
return ans;
}
int main()
{
cin>>W>>H;
H--;
int start,sit,v,value;
int n=0;
while(cin>>start>>sit>>v>>value)
{
if(H%v==0)
{
int time=start+H/v;
n=max(time,n);
f[time][sit]+=value;
}
}
int mid=(W+1)/2;
for(int i=n-1;i>=0;i--)
{
for(int j=W;j>0;j--)
{
f[i][j]+=get(i,j);
}
}
cout<<f[0][W/2+1]<<endl;
for(int i=0,j=(W/2)+1; ;i++)
{
if(!get(i,j))break;
j+=s;
cout<<s<<endl;
}
}