线性代数复习:矩阵的特征值与特征向量

1.特征值与特征向量

A A A n n n阶矩阵,如果存在数 λ \lambda λ n n n维非零向量 x x x,使关系式
A x = λ x Ax=\lambda x Ax=λx
成立,则称 λ \lambda λ A A A的特征值, x x x A A A对应于特征值 λ \lambda λ的特征向量。
定理: n n n阶方阵 A = ( a i j ) A=(a_{ij}) A=(aij)的特征值为 λ 1 , λ 2 , ⋯   , λ n \lambda _{1},\lambda _{2},\cdots ,\lambda _{n} λ1,λ2,,λn,则有:
( 1 ) : λ 1 + λ 2 + ⋯ + λ n = a 11 + a 22 + ⋯ + a n n (1):\lambda _{1}+\lambda _{2}+\cdots +\lambda _{n}=a_{11}+a_{22}+\cdots +a_{nn} (1):λ1+λ2++λn=a11+a22++ann
( 2 ) : λ 1 λ 2 ⋯ λ n = ∣ A ∣ (2):\lambda _{1}\lambda _{2}\cdots \lambda _{n}=|A| (2):λ1λ2λn=A
注意:
a 11 + a 22 + ⋯ + a n n a_{11}+a_{22}+\cdots +a_{nn} a11+a22++ann称为矩阵 A A A的迹,记为 t r ( A ) tr(A) tr(A)
方阵 A A A可逆的充要条件是: A A A的所有特征值都不为零。
矩阵 A A A A T A^{T} AT有相同的特征值。
拓展:
λ \lambda λ是矩阵 A A A的特征值,则有以下对应关系:
A T → λ ; A^{T}\rightarrow \lambda ; ATλ;
k A → k λ ; kA\rightarrow k\lambda; kAkλ;
A k → λ k ; A^{k}\rightarrow \lambda ^{k}; Akλk;
f ( A ) → f ( λ ) f(A)\rightarrow f(\lambda) f(A)f(λ), f f f为多项式,特别地 a A + b E → a λ + b ; aA+bE\rightarrow a\lambda +b; aA+bEaλ+b
A − 1 → 1 λ A^{-1}\rightarrow\frac{1}{\lambda} A1λ1( A A A可逆)
A ∗ → ∣ A ∣ λ A^{*}\rightarrow \frac{|A|}{\lambda } AλA( A A A可逆)

2.相似矩阵性质与定义

A , B A,B A,B都是 n n n阶矩阵,若存在可逆矩阵 P P P,使得 P − 1 A P = B P^{-1}AP=B P1AP=B,则称 B B B A A A的相似矩阵,或称 A A A B B B相似,也可以表示为 A ∼ B A\sim B AB, P P P称为把 A A A变成 B B B的相似变换矩阵。
相似是矩阵之间的一种关系,它具有以下性质:
(1):反身性: A A A A A A相似。
(2):对称性:若 A A A B B B相似,则 B B B A A A相似。
(3):传递性:若 A A A B B B相似, B B B C C C相似,则 A A A C C C相似。
(4):相似矩阵的秩和行列式都相等。
(5):相似矩阵有相同的可逆性,且可逆时其逆也相似。
(6):相似矩阵的同次幂仍相似。

总结: A ∼ B A\sim B AB,则
A T ∼ B T A^{T}\sim B^{T} ATBT
A − 1 ∼ B − 1 A^{-1}\sim B^{-1} A1B1
A ∗ ∼ B ∗ A^{*}\sim B^{*} AB
a A + b E ∼ a B + b E aA+bE\sim aB+bE aA+bEaB+bE
A k ∼ B k A^{k}\sim B^{k} AkBk
A B ∼ B A AB\sim BA ABBA

3.相似矩阵的必要条件

A ∼ B A\sim B AB,则
(1): ∣ A − λ E ∣ = ∣ B − λ E ∣ |A-\lambda E|=|B-\lambda E| AλE=BλE
(2): A A A B B B有相同的特征值 λ 1 , λ 2 , ⋯   , λ n \lambda _{1},\lambda _{2},\cdots ,\lambda _{n} λ1,λ2,,λn;
(3): ∣ A ∣ = ∣ B ∣ = λ 1 λ 2 ⋯ λ n |A|=|B|=\lambda_{1}\lambda_{2}\cdots \lambda_{n} A=B=λ1λ2λn
(4): t r ( A ) = t r ( B ) = ∑ i = 1 n λ i tr(A)=tr(B)=\sum_{i=1}^{n}\lambda _{i} tr(A)=tr(B)=i=1nλi
(5): R ( A ) = R ( B ) R(A)=R(B) R(A)=R(B)

4.相似矩阵的充分条件

知识准备:
如果 n n n矩阵 A A A相似与对角矩阵 Λ \Lambda Λ,即 A ∼ Λ A\sim \Lambda AΛ,则称 A A A可相似对角化。

A ∼ Λ , Λ ∼ B ⇒ A ∼ B A\sim \Lambda ,\Lambda \sim B\Rightarrow A\sim B AΛ,ΛBAB
利用相似矩阵的传递性即可证明

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

散一世繁华,颠半世琉璃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值