矩阵的特征值与特征向量及性质及相似矩阵

A=\begin{bmatrix} 1 &-2 &2 \\ -2 &-2 &4 \\ 2 & 4 & -2 \end{bmatrix}

\left | \gamma E-A \right |=\begin{bmatrix} \gamma-1 & 2 & -2\\ 2& \gamma+2 &-4 \\ -2& -4 & \gamma+2 \end{bmatrix}=\begin{bmatrix} \gamma-1 &2 &-2 \\ 2 & \gamma+2 &-4 \\ 0& \gamma-2 & \gamma-2 \end{bmatrix}
=(\gamma-2)*(-1)^{3+2}*\begin{bmatrix} \gamma-1 & -2\\ 2& -4 \end{bmatrix}+(\gamma-2)*(-1)^{3+3}*\begin{bmatrix} \gamma-1 & 2\\ 2& \gamma+2 \end{bmatrix}

=(\gamma-2)(\gamma-2)(\gamma+7)

\gamma_{1}=-7    \gamma_{2}= \gamma_{3}=2

\gamma_{1}=-7

\gamma E-A=\begin{bmatrix} -8 &2 & -2\\ 2& -5 & -4\\ -2 &-4 &-5 \end{bmatrix}=\begin{bmatrix} 0 & 0 & 0\\ 2 & -5 & -4\\ 0 & -9& -9 \end{bmatrix}

列方程组

-9X_{2}-9X_{3}=0

2X_{1}-4X_{2}-5X_{3}=0

解得:

设 X_{1}=1   则X_{2}=2,X_{3}=-2   

解为  c1\begin{vmatrix} 1\\ 2\\ -2\end{vmatrix}

\gamma_{2}= \gamma_{3}=2

\gamma E-A=\begin{bmatrix} 1 &2 &-2 \\ 2& 4 &-4 \\ -2 &-4 & 4 \end{bmatrix}=\begin{bmatrix} 1 &2 &-2 \\ 0 & 0 & 0\\ 0& 0 & 0 \end{bmatrix}

列方程

X_{1}+2X_{2}-2X_{3}=0

设X2=0  X3=1,则x1=2 

x3=0,x2=1,则X1=-2

则有  C1\begin{bmatrix} 2\\ 0\\ 1\end{bmatrix}+C2\begin{bmatrix} -2\\ 1\\ 0\end{bmatrix}   ,C1,C2不同时为零。

性质:

A和AA^{T}(A的转置)有相同的特征值

\left | \lambda E -A^{T}\right |=\left | \lambda E^{T} -A^{T}\right |=\left | \lambda E -A\right |^{T}=\left | \lambda E -A\right |

(A转置向外提)

3).n个特征值\lambda_{1},\lambda_{2},\lambda_{3}....\lambda_{n},所有的特征值之和等于矩阵的主对角线的元素之和

\sum_{i=1}^{i=n}\lambda _{i}=\sum_{i=1}^{i=n}\lambda _{aii}

所有的特征值相乘等于A的行列式

\lambda _{1}\lambda _{2}\lambda _{3}\lambda _{n}=\left |A \right |

从中可知,要想使A可逆,所有的特征根都不能为0。

相似矩阵 

A、B是n阶方阵,存在n阶可逆P

P^{-}AP  则A\sim B(A相似于B)

反身性:A\sim A   E^{-}AE=B

对称性

PBP^{-}=A

3)A\sim B,B\sim C   \Rightarrow  A\sim C(A与B相似。B与C相似,得出A与C相似)

\because A\sim B \therefore P^{-}AP=B

\because B\sim C \therefore Q^{-}BQ=C

Q^{-}P^{-}APQ=(PQ)^{-}APQ=C

温故逆矩阵的一些性质:

相似矩阵的性质

性质1)A\sim B ,则A,B有相同的特证值 ;\left | A \right |=\left | B\right |(A,B的行列式相等); tr(A)=tr(B)(A,B迹相同);

性质2)A\sim B,A可逆的充要条件是B可逆。A^{-}\sim B^{-}

A与B同时可逆,或同时不可逆。

\because B^{-}=(P^{-}AP)^{-}=P^{-}A^{-}P \therefore A^{-}\sim B^{-}

性质3),如果 A\sim B,则A^{M}\sim B^{M}

P^{-}AP=\Lambda(对角形)

与对角形矩阵相似的条件

定理 :A相似于\Lambda,A有n个线线无关的特征向量

P^{-}AP=\Lambda=\begin{vmatrix} \lambda 1 & & \\ & \lambda 2 & \\ & & \lambda n \end{vmatrix}

p=(\alpha _{1},\alpha _{2}....\alpha _{n})

推论:

A有n个互异的特征值,A\sim \Lambda

例2 A=\begin{pmatrix} 3 & 2& -1\\ -2 & -2 &2 \\ 3 &6 & -1 \end{pmatrix},相似于对角形  P=? \Lambda=?

解:

先求特征值

进行列变换,第三列加到第一列

\left |\lambda E-A \right |=\begin{vmatrix} \lambda -3 & -2 &1 \\ 2 & \lambda+2 &-2 \\ -3& -6 & \lambda+1 \end{vmatrix}=\begin{vmatrix} \lambda -2 & -2 &1 \\ 0& \lambda+1 &-2 \\ \lambda-2& -6& \lambda+1 \end{vmatrix}

=(\lambda -2)^{2}(\lambda +4)

\lambda _{1}=-4

\lambda _{2}=\lambda _{3}=2

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值