引言
场景中有很多的三角形,如果实现可见性和遮挡呢?
一个简单的想法是,从远到近画,近处的物体自然会覆盖掉远处的物体,这种画法也叫画家算法。
但是实际绘制中物体的顺序是不容易确定的,比如如下图绘制一个立方体:
在空间中,两个三角形或者两个面之间的前后关系并不是唯一的,如下图所示:
一、深度缓存Z-Buffer
因此我们不能给空间中的三角形定义前后顺序关系,也因此不能使用画家算法,甚至不能对三角形整体进行绘制。使用什么方案才能实现可见性和遮挡呢?
使用Z-Buffer深度缓存。对于每一个像素,我们记录覆盖它的物体片段的Z值,当循环到一个新的片段时,我们比较新片段Z值和像素处记录的Z值,如果新片段Z值更大即离摄像机更近覆盖了旧片段,则更新像素处的Z值,并将此片段的颜色值赋值给这个像素。
伪代码如下所示,对于每一个三角形中的每一个像素,去计算这个像素是否会被这个三角形的颜色更新。最后就得到了每一个像素处的颜色值。
在现代渲染中,我们使用颜色缓存记录每个像素处的颜色值,我们使用另一个缓存记录每个像素处的最大Z值,这个缓存就叫做深度缓存Z-Buffer。
深度缓存工作流程示意图:
深度缓存的时间复杂度为O(n),因为就是求了个最大值而已。
Z-Buffer无法处理透明物体的深度,透明物体需要特殊处理。
计算机保存和计算浮点数是有误差的,因此基本上两个浮点数永远不会相同。在现实中偶尔会出现深度值相同,比如我们自己定义的地板和人脚的深度值,通常我们都把他们设置为0,这会导致一些不好情况的发生。你可能会有疑问,地板和脚,是高度是y值,怎么是深度呢?我们现在所说的深度是指从游戏中摄像机的方向看去,也就是说坐标系并不是世界坐标系。比如你玩3A游戏时,朝自己的脚看,那脚和地面的前后关系不就是深度Z值决定的吗?这是因为我们现在讨论的深度是在观察坐标中的,即摄像机位于坐标系原点,而摄像机朝向的方向就是Z轴(在本课中为-Z半轴)。
二、Shading引言
(1)我们现在能做的
通过之前的内容,我们可以通过观察矩阵将摄像机和模型转换到标准位置,再通过投影和视口变换将三维空间映射到二维空间,再通过光栅化采样和反走样得到屏幕上每个像素的颜色值。
渲染到此就结束了吗?如果我们止步于此,我们只能得到下图的渲染效果:
(2)我们期望的效果
貌似这并不是我们想要得到的,它看起来并不真实。我们期待看到的应该是这种效果:
这张图看起来更加真实一些,为什么呢?它和第一张图有什么区别吗?仔细看第二张图中的立方体,你会看到它同一个面的颜色有所不同,比如每个立方体的上表面,而第一张图无论何时何地每一个面给我们呈现的颜色都是相同的。注意第二张图每个立方体的左侧面,它是很暗淡的,带给我们一种真实的视觉感。这像是什么呢?阴影!我们想要还原3D真实世界中的效果,就必然要模拟真实世界中的光照、阴影等效果才行。
(3)模拟真实的世界
如下图(渲染的),为什么我们能看到的世界是五彩缤纷的?
三、Shading
什么是着色呢?引入明暗的不同。着色的定义:对不同的物体,应用不同材质的过程。
不同的材质和光线的相互作用不同。
(1)Blinn-Phong反射模型
Blinn-Phong是一个着色模型,它考虑了物体的高光、漫反射、环境光。反射示意图如下:
定义v为观察方向、n为法线方向、I为反射方向,三个向量都是单位向量。
shading≠shadow,即着色不等于也不考虑阴影。对于任意一个片段的着色,我们只考虑片段本身,不考虑其他任何物体的存在。
(2)漫反射Diffuse Reflection
漫反射可以实现物体表面颜色的渐变效果。
一束光从光源发出,到达物体某个点,再经过反射进入我们的眼睛。计算我们看到的颜色,就是计算反射光的强度。
计算反射光的强度,先要考虑反射强度,即入射光有多少被反射了?还要考虑入射光强度,即从光源到反射点,有多少光被衰减了?
(2.1)反射强度
某个地方接收到的光照强度,使用单位面接接收到的光照能量去衡量。如下图所示,物体接收到光的能量与 入射方向和表面法向量间夹角的余弦值 成正比,我们使用这个余弦值去代表反射的强度。
(2.2)入射光的衰减
考虑点光源的能量是发散的,以点光源为球心,不断发散到一个又一个的球壳上。能量是守恒的,即球壳表面能量之和不变,但是随着球壳向外的传播,球壳表面积会增大,导致每一条光线的能量逐渐变小。
理想化的假设光源每时每刻散发出的能量相同为E,则在任意一个时刻t,这些能量E一定均匀散布在一个半径为r的球壳上,则单位面积球壳具有的能量为E/(4πr ^ 2)。任意一个距点光源距离为r的物体,我们可以得知它接收到的能力为E/(4πr ^2),4π为常数,因此我们可以得出:物体接收到光的强度和它距离光源距离的平方成反比(注意这只针对点光源,并且没考虑遮挡)。
(2.3)计算公式
点乘为负表示光线射到的是反面,没有物理意义所以使用MAX函数。
在真实世界中物体是有不同的材质的,物体是会吸收光的能量的,kd就是度量的物体对能量吸收的强弱,称为:漫反射系数。如果kd为0,物体就会吸收所有的光,而不会有光反射处理导致我们看到的都是黑的,比如黑猫效应。kd可以是一个三维向量,分别对应物体对RGB三原色的吸收。
最终实现的渐变效果:
注意漫反射计算公式中没有涉及v即反射方向,因此它代表观察者无论从哪个视角去看,看到物体的效果和颜色都是一样的。这是正确的,因为漫反射就是表现光向四面八方的反射。
在现实中,光是有属性的,即光的颜色值(一个三维向量)。而现实中的物体也是有材质的,比如金属和木头的反射效果就截然不同,因此我们会给物体设置一个材质属性,表示它自身材质对光的相互作用,这里我们介绍了kd表示物体材质对光漫反射强度的一个度量,而材质中还有很多其它的度量。