均匀圆阵UCA到虚拟线阵变换的DOA估计

1.引言

参考文章:Eigenstructure techniques for 2-D angle estimation with uniform circular arrays .https://ieeexplore.ieee.org/document/317861

梁国龙,田蕴琦,付进,等.基于均匀圆阵中心对称性的相干源方位估计[J].哈尔滨工程大学学报,2019,40(12):1958-1964.

https://kns.cnki.net/kcms2/article/abstract?v=2G5Y6l-6Cy_-_pwwqunUS3qQyxehVS9kDpysxfwHCyr0ouhpSr2a7GWs4sk1Kc5rW0Yn0FGTG71_-mjUT8u0pFwBv1L-iWitoYHRSFC_MzeOwD0FfmQRFw08QgC8LeNHvWITbsN6JEhNAmWN8WVUePC0WpHoPXlSiPTAQN0jp0-j0xn0NKX0Vtq-UsSyS4nh&uniplatform=NZKPT&language=CHS
 

       均匀圆阵的阵列流形不具有Vandermonde结构性质,无法使用ULA阵列的一些DOA算法本文学习虚拟阵变换法,通过模式空间变换将均匀圆阵转换为均匀线阵,其阵列流形转换成具有范德蒙结构。

2.UCA阵列结构  

文章把入射信源与阵元看作在同一平面上,即俯仰角为0°,方位角\Theta。 UCA阵半径为R,阵元数M,窄带信号数N,快拍数为L。

第m个阵元与信源的夹角:\Theta -\Theta _{m}=\Theta -\frac{2\pi (m-1)}{M}

阵列导向矢量为:a=[e^{-j\omega cos(\Theta -\Theta _{1})r/c},...,e^{-j\omega cos(\Theta -\Theta _{m})r/c}]^{T}

t时刻第m个阵元的接收信号表达式为: x_{m}=A(\Theta )x(t)+n(t)

其中x为窄带信号,n为噪声。

3.模式空间变换

图源自参考论文

虚拟均匀线阵如图,d为阵元间距,虚拟线阵的输出信号Y(t)由原UCA接收信号经转换矩阵T相乘得到。 

Y(t)=TX(t)=A_{v}\cdot s(t)+T\cdot n(t)

其中A_{v}是经转换后的虚拟线阵导向矢量。

 模式空间变换矩阵T=\frac{1}{M}J^{-1}F

F是离散傅里叶变换子矩阵,J是由k阶第1类贝塞尔J_{k}(\cdot )构成的对角阵。

J=diag\left \{ j^{-k}J_{-k} (-\beta ),...,j^{k}J_{k} (-\beta )\right \}

\beta =2\pi r/\lambda

F=[\omega _{-k},\omega _{-k+1},...,\omega _{k-1},\omega _{k}]^{H}

\omega _{k}=[1,e^{-j2\pi k/M},..,e^{-j2\pi k(M-1)/M}]

那么带代入上式,虚拟线阵阵列流形为:

a_{nv}=[e^{-jk\Theta _{n}},e^{-j(k-1)\Theta _{n}},...,e^{j(k-1)\Theta _{n}},e^{jk\Theta _{n}}]^{T}

A_{v}=[a_{(\Theta _{1})},a_{(\Theta _{2})},...,a_{(\Theta _{N})}]

转换后的虚拟线阵阵列流形具有范德蒙结构。

此时可以算出虚拟线阵输出信号Y(t)。

 由文章推导

UCA可激励最大模式数 满足2K< M

4.MATLAB仿真实验

实验加入了俯仰角估计,使用MUSIC算法进行虚拟线阵DOA估计。

clc;
clear all;
M=24;
c = 3*10^8;%光速
f = 3*10^9;%接受信号频率
lamda = c/f;%波长
theta=[22]*pi/180;
phi=[60]*pi/180;
P=length(theta);
kp=150;
% R=lamda*sin(pi-pi/2/M)/sin(2*pi/M)/2;
R = lamda/(4*sin(pi/M));%不模糊最大阵列半径
%R=lamda*2/1;
beita=2*pi*R/lamda;
% N=floor(beita);
N=floor(M/2-1);
PN=2*N+1;
dtheta = 0.01; % 方位角搜索步长
dphi = 0.01; % 俯仰角搜索步长
%%%%%%%%%%%%%%%%%%%%生成预处理矩阵
% for in=1:PN
%     for ip=1:P
%        Aba(in,ip)=exp(i*(in-N-1)*theta(ip))*sin(phi(ip));
%     end
% end
fain=2*pi*[0:M-1]/M;
for ia=1:P
    for ifai=1:M
        a_r(ifai,ia)=exp(i*beita*cos(theta(ia)-fain(ifai))*sin(phi(ia)));
        %a_r(ifai,ia)=exp(i*beita*cos(theta(ia)-fain(ifai)));
    end
end
m=-N:N;
D=diag(i.^m.*besselj(m,beita));
for fi=1:PN
      for mi=1:M
          F(mi,fi)=exp(-i*2*pi*(fi-N-1)*(mi-1)/M);   
      end
end
T=pinv(D)*F'/M;%预处理矩阵

%shengcheng xinhao
fw=[0.01,0.05]*pi;
for is=1:1:P
    for t=1:1:kp
         if randn>0%%%%%%%%%%%%%产生不相干信号
             S(is,t)=cos(fw(is)*t)*sin(phi(is));
         else S(is,t)=-cos(fw(is)*t)*sin(phi(is));
         end
            %%%%%%%%%%%%产生相干信号
%              S(is,t)=cos(fw(is)*t);       
    end
end
zn=1:PN;
P_noise=0.1;
noise=sqrt(P_noise/2)*(randn(M,kp)+i*randn(M,kp));
Av=T*a_r;
%y=T*a_r*S+T*noise;  %预处理信号
y1=a_r*S+noise;
y=T*y1;
% MUSIC 算法估计方位角和俯仰角
Rxx = y * y' / kp; 

% 特征值分解
[V,D] = eig(Rxx);
[lambda_sorted, index] = sort(diag(D), 'descend');
V_sorted = V(:, index);
U_S = V_sorted(:, 1:P);
U_N = V_sorted(:, P+1:end);

% MUSIC算法搜索角度
for k = 1:ceil(2*pi/dtheta)
    theta1 = (k-1)*dtheta;
    for m = 1:ceil(pi/(2*dphi))
        phi1 = (m-1)*dphi;
        for n = 1:M
            phi_n = (2*pi*R/lamda)*cos(theta1 - fain(n))*sin(phi1);
            a1(n) = exp(-1i*phi_n);
        end
        a=T*a1';
        P_MUSIC(k,m) = 1/(a'*U_N*U_N'*a);
    end
end

% 找到谱峰位置
[max_value, index] = max(P_MUSIC(:));
[index_theta, index_phi] = ind2sub(size(P_MUSIC), index);
theta_est = (index_theta-1)*dtheta*180/pi;
phi_est = (index_phi-1)*dphi*180/pi;

disp(['估计的方位角:', num2str(theta_est)]);
disp(['估计的俯仰角:', num2str(phi_est)]);
disp(['真实的方位角:', num2str(theta*180/pi)]);
disp(['真实的俯仰角:', num2str(phi*180/pi)]);

估计结果

5.总结

文章只对基础的UCA模式变换为虚拟线阵算法进行仿真,参考文章对算法进行一些改进可以参考。

1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位(Dv-Hop定位优化、RSSI定位优化) ##### 6.2 无线传感器覆盖优化 ##### 6.3 无线传感器通信及优化(Leach协议优化) ##### 6.4 无人机通信中继优化(组播优化)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值