名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》
创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊)
李飞飞:计算机视觉,教机器看懂世界
一、非凡的旅程:从移民少女到AI领军人物
1. 童年与移民经历
李飞飞于1976年7月3日出生在中国北京,在四川成都长大。在她12岁时,父亲远赴美国,四年后的1992年,15岁的李飞飞随母亲前往美国新泽西州帕西帕尼-特洛伊山与父亲团聚并定居。
图片:李飞飞
初到美国的头两年,家庭生活并不富裕,李飞飞曾在餐馆打工,做过家庭清洁工,以帮助家庭度过经济困难时期。李飞飞的父母都是在中国接受教育的知识分子,但因为语言障碍,在美国无法从事工程师或科学研究工作,父亲做过照相机修理工,母亲则做过收银员。
2. 学术之路
尽管面临语言和文化障碍,李飞飞仍然在学业上展现出非凡的才华。1995年,她以全班第六名的优异成绩从帕西帕尼高中毕业,SAT数学部分获得满分800分,并获得了普林斯顿大学的奖学金。在大学期间,她周末经常回家帮助父母经营干洗店,同时努力完成学业。
1999年,李飞飞从普林斯顿大学本科毕业,获得物理学学士学位,之后前往西藏研究藏药一年。2000年,她进入加州理工学院,开始研究生工作,主要导师是Pietro Perona。2005年,她从加州理工学院获得电子工程博士学位。
图片:普林斯顿大学
3. 职业发展
李飞飞的职业生涯同样令人瞩目。2005年至2006年,她在伊利诺伊大学厄巴纳-香槟分校电气与计算机工程系担任助理教授;2007年至2009年,她转至普林斯顿大学计算机科学系任助理教授;2009年,她加入斯坦福大学,担任助理教授,并在2012年晋升为终身副教授,2018年晋升为终身正教授,2019年被聘为斯坦福大学首任终身红杉讲席教授。2013年至2018年,她担任斯坦福大学人工智能实验室(SAIL)主任。
在学术休假期间(2017年1月至2018年9月),李飞飞出任谷歌(Google)副总裁,并兼任Google Cloud AI/ML首席科学家。2018年9月,她返回斯坦福任教,并任斯坦福以人为本人工智能研究院(HAI)院长。
图片:李飞飞与斯坦福大学前副校长,哲学家约翰·艾克曼迪(John Etchemendy)共同担任HAI 研究院院长
二、ImageNet:改变计算机视觉的里程碑
1. 构思与挑战
2006年,李飞飞开始构思ImageNet的理念,这在当时的计算机视觉领域是一个颇具挑战性的想法。大多数研究人员专注于算法优化,而李飞飞却认识到数据对于视觉识别的重要性。她的目标是创建一个包含数百万张图像,覆盖数万个类别的大规模图像数据库,以此作为训练和评估计算机视觉算法的基础。
图片:ImageNet
这一构想在初期遭到了包括计算机视觉领域著名学者Jitendra Malik在内的多位专家的质疑。当时的主流观点认为,算法是解决计算机视觉问题的核心,而收集大量图像数据似乎不是一个有效的研究方向。如果项目失败,可能会严重影响李飞飞获得终身教职的机会。
2. 众包标注的创新
构建ImageNet面临的最大挑战之一是如何有效地收集和标注大量图像。最初,李飞飞计划雇佣本科生每小时支付10美元进行手动标注,但她很快意识到,以这种方式完成整个项目需要19年时间。
突破性的解决方案来自于亚马逊的众包平台Amazon Mechanical Turk。通过这一平台,李飞飞的团队能够雇佣全球数千名工作者同时进行图像标注,大大加快了项目进度,也显著提高了成本效益。在ImageNet发展的高峰期,李飞飞的团队成为了Mechanical Turk平台上最大的雇主之一。
图片:Amazon Mechanical Turk
3. 从质疑到影响世界
2009年,李飞飞和她的团队正式发布了ImageNet的初始版本,包含1500万张图像,涵盖22000个类别。然而,这一成就在当时并未引起广泛关注。在计算机视觉领域的顶级会议CVPR上,ImageNet的论文仅获得了海报展示(poster)的机会,而非口头报告(oral presentation)。
2010年,为了提升ImageNet的影响力,李飞飞创办了ImageNet大规模视觉识别挑战赛(ILSVRC)。这一比赛邀请研究人员使用ImageNet数据集训练算法,并在一组未见过的图像上进行测试,评估算法的识别准确率。
真正的转折点出现在2012年的ImageNet挑战赛上。多伦多大学的Geoffrey Hinton、Ilya Sutskever和Alex Krizhevsky团队提出了一种名为AlexNet的深度卷积神经网络,其识别错误率比第二名低了近10个百分点,引起了学术界的轰动。这一突破标志着深度学习在计算机视觉领域的崛起,也为后来的人工智能革命奠定了基础。
三、技术贡献:构建机器的"眼睛"
1. 计算机视觉的奠基工作
李飞飞在计算机视觉领域的研究涵盖了多个方面,包括视觉识别、场景理解、3D重建、视频分析等。她的核心贡献之一是将人类视觉系统的认知原理应用到计算机视觉研究中,使机器能够像人类一样"看到"和"理解"视觉信息。
李飞飞在2004年参与创建的Caltech 101数据集是早期视觉识别的重要基准,包含101类物体的图像。而后来的ImageNet则将数据规模扩大了数百倍,为深度学习模型的训练提供了前所未有的数据支持。
2. 深度学习与视觉理解
在深度学习兴起后,李飞飞的研究重点转向了如何利用深度神经网络进行更复杂的视觉理解任务。她的团队开发了多种创新算法,能够对图像进行细粒度的语义分割、物体检测、场景理解和关系推理。
李飞飞特别关注视觉与语言的结合,开发了能够自动生成图像描述、回答关于图像的问题以及基于文本生成图像的系统。这些工作为后来的多模态人工智能奠定了基础。
- 学术影响与传承
李飞飞已在顶级学术期刊和会议上发表了200多篇科学论文,包括《自然》、《美国国家科学院院刊》、《神经科学期刊》、CVPR、ICCV等。这些研究工作被引用数万次,对整个领域产生了深远影响。
作为斯坦福大学的教授,李飞飞还培养了一大批优秀的博士生和博士后,其中许多人已成为计算机视觉和人工智能领域的领军人物。她的教学工作,尤其是斯坦福大学的CS231n课程《卷积神经网络视觉识别》,被誉为深度学习计算机视觉的经典教程,影响了全球数十万学习者。
四、以人为本的AI:技术与人文的交融
1. HAI研究院的创立
2019年,李飞飞与斯坦福大学前教务长John Etchemendy博士共同创立了斯坦福以人为本的人工智能研究院(HAI),这是一个跨学科的研究机构,旨在促进AI技术与人文、社会科学的融合,关注AI对人类社会的影响,并确保AI技术的发展有利于人类福祉。
图片:斯坦福以人为本的人工智能研究院(HAI)
在李飞飞看来,AI技术不应仅仅关注技术突破,还应考虑其社会影响和伦理问题。HAI研究院的使命是"通过培育多元化的人类智慧,发展人工智能技术和应用,造福人类和社会"。
2. 多样性与包容性倡导
作为AI领域少数的女性领导者,李飞飞一直致力于促进科技领域的多样性和包容性。2017年,她共同创立了AI4ALL组织,这是一个非营利组织,致力于增加人工智能领域的多样性和包容性,特别关注女性、少数族裔和弱势群体在AI领域的教育和职业发展。
图片:AI4ALL组织
她经常强调多样性对AI发展的重要性,指出人工智能将改变世界,而"谁将改变AI"这一问题同样关键。只有让更多元的群体参与AI研究和开发,才能确保AI技术的发展方向符合整个人类社会的利益。
3. AI伦理与治理
李飞飞积极参与AI伦理和治理的讨论,提倡负责任的AI发展。她认为,AI技术的力量如此强大,必须确保其发展和应用有利于人类福祉,而不是制造新的社会问题。
在HAI研究院的领导下,李飞飞推动了许多研究项目,探索AI在医疗、教育、环境保护等领域的应用,以及AI对就业、隐私、安全等方面的影响,为AI的健康发展提供了重要的思考和实践案例。
五、学术荣誉与社会影响
1. 学术荣誉
李飞飞获得的学术荣誉不胜枚举。2020年2月,她当选为美国国家工程院院士;2020年10月,当选为美国国家医学院院士;2021年4月,当选为美国艺术与科学院院士。她是唯一一位同时当选这三大美国学术院院士的华裔女性科学家。此外,她还获得了2012年斯坦福大学W.M. Keck基金会教职学者、2011年美国斯隆研究奖等重要奖项。
2019年,李飞飞与团队因ImageNet的贡献获得了CVPR 2019 Longuet-Higgins奖,这一奖项表彰十年前发表的对计算机视觉研究产生重大影响的论文。正如杰弗里·辛顿(Geoffrey Hinton)所说:“李飞飞是第一位真正理解大数据力量的计算机视觉研究人员,她的工作打开了深度学习的闸门,推动了人工智能技术的问世。”
2. 产业影响
除了学术研究,李飞飞还在产业界发挥了重要影响。在谷歌任职期间,她领导开发了多项AI产品和服务,如AutoML等,降低了企业和开发者使用AI技术的门槛。
图片:Google
2020年5月,李飞飞曾担任Twitter公司董事会独立董事,直到2022年10月埃隆·马斯克收购Twitter后离任。她还与多家科技公司保持合作,推动AI技术的商业应用和社会价值实现。
3. 公众教育与传播
李飞飞致力于AI科学知识的公众教育和传播。她经常在各种公开场合发表演讲,解释复杂的AI概念,讨论AI技术的社会影响,并鼓励年轻人特别是女性和少数族裔追求STEM(科学、技术、工程和数学)教育。
她在TED、未来论坛等平台的演讲获得了广泛关注,她的个人故事和专业成就激励了无数人,尤其是那些面临类似语言、文化和性别障碍的年轻人。
六、研究方法与思想
1. 跨学科视角
李飞飞的研究方法具有鲜明的跨学科特色。她将计算机科学与认知神经科学、心理学相结合,从人类视觉系统中汲取灵感,设计更加智能的计算机视觉算法。
在一次演讲中,李飞飞从四个视角阐述了她对计算机视觉的理解:作为孩子的成长、大脑的发展、技术从业者的工作以及教育者和母亲的角色。这种多维度的思考方式使她的研究既有技术深度,又有人文关怀。
2. 数据驱动的范式转变
李飞飞的重要贡献之一是推动了计算机视觉研究范式的转变,从以算法为中心转向数据与算法并重。正如她所说:“尽管很多人都在注意模型,但我们要关心数据,数据将重新定义我们对模型的看法。”
ImageNet的成功印证了这一观点,大规模高质量的数据集与深度学习算法相结合,引发了计算机视觉乃至整个人工智能领域的革命。这一范式已成为现代AI研究的标准方法。
3. 技术与人文的平衡
李飞飞始终强调技术发展与人文关怀的平衡。她认为,技术进步的最终目的是服务人类,改善人类生活质量,而不是单纯追求技术突破。
这种平衡观念体现在她的研究选题、教学内容以及公共参与中。她特别关注AI技术在医疗健康、教育等领域的应用,以及技术如何赋能弱势群体,促进社会公平与发展。
七、未来展望:AI的新时代
1. 技术趋势与挑战
随着深度学习的广泛应用,计算机视觉已经取得了长足进步,在图像分类、目标检测、语义分割等任务上达到或超过了人类水平。然而,李飞飞认为,当前的AI系统离真正的智能还有很大距离。
未来的研究方向包括:多模态学习,将视觉与语言、声音等其他模态信息结合;少样本学习,使AI系统能够像人类一样从少量样本中快速学习;因果推理,使AI系统能够理解事物之间的因果关系,而不仅是相关性;以及自监督学习,减少对大量标注数据的依赖。
2. AI与社会的共生
李飞飞特别关注AI与人类社会的和谐共生。她认为,AI技术的发展应当考虑社会需求和人文价值,同时社会也需要为AI的健康发展创造适宜的环境。
这包括完善AI伦理和治理框架,加强AI教育和人才培养,推动AI的普惠应用,以及促进国际合作,共同应对AI可能带来的全球性挑战。
3. 个人使命与愿景
作为一名科学家、教育者和公共知识分子,李飞飞将继续致力于推动AI技术的进步和普及。她希望通过自己的工作,不仅促进技术创新,还能培养更多具有跨学科视野和人文关怀的AI人才。
同时,她也将继续倡导科技领域的多样性和包容性,为女性和少数族裔科学家创造更多机会,使AI技术的发展能够反映人类社会的多元价值和需求。
八、结语:点亮机器的"眼睛",照亮人类的未来
李飞飞的故事是美国梦的现代诠释,从移民少女到全球顶尖科学家,她克服了语言、文化和性别障碍,在计算机视觉和人工智能领域取得了非凡成就。通过ImageNet和一系列开创性研究,她为机器赋予了"视觉"能力,彻底改变了计算机视觉的研究范式,并为深度学习革命奠定了基础。
作为斯坦福以人为本的人工智能研究院(HAI)的领导者,李飞飞不仅关注技术突破,还致力于确保AI技术的发展方向有利于人类福祉。她的跨学科视野和人文关怀使她的研究既有科学深度,又有社会价值。
从教机器"看见"到让机器"理解",李飞飞的研究旅程反映了计算机视觉的发展历程,也映射着人工智能的未来方向。在技术与人文的交融中,李飞飞正在帮助我们构建一个机器能够看懂世界,同时也能够理解和尊重人类的未来。
专栏✅:《计算机名人堂》,欢迎订阅催更,谢谢大家支持!
创作者:Code_流苏(CSDN)