(四)航空发动机强度与振动复习纲要

第6章 圆盘振动

6.1 圆盘振动现象

轮盘的结构型式可分为中心轴联结(中心固定)的轮盘和外缘联结(边缘固定)的轮盘。

▶轮盘的振动形式可以分为:第一类振动:(节圆振动),这类振动一般不会导致轮盘的损坏;第二类振动:(节径振动),这类振动容易引起轮盘的损坏;复合振动。

(1)第一类振动—————振动形式中心对称,即全部节线都是同心圆。中心固定的一阶振动又称伞形振动。
对于外缘固定的圆盘,振动时没有中心节点,节圆情况类似。
节圆振动不严重,一般不会导致盘的损坏。

(2)第二类振动————全部节线都是沿圆盘面均匀分布的直径,称为节径。
这类振动无论在中心固定或边缘固装的圆盘都可能产生。这类振动最容易引起轮盘的损坏。

(3)复合振动

将各类振动编以标记符号。其中分子为节圆数,分母为节径数。

在这里插入图片描述

☛[选择题]判断下面轮盘的振动类型(C)

在这里插入图片描述

A、弯曲振动 B、节圆振动 C、节径振动 D、伞形振动

6.2 等厚圆盘的自振频率

圆盘的各种自振频率随其转速增加而增加。

高温使轮盘处理的弹性模量减小,从而导致轮盘的振动固有频率下降。

6.3 动波

第二类振动在实际发动机中最常见,下面详细分析这类振动。
与叶片振动类似,在求解盘的节径振动问题中,采用极坐标,写出振幅方程如下:
W = W 0 ( r , θ ) cos ⁡ p t W=W_0\left( r,\theta \right) \cos pt W=W0(r,θ)cospt
W 0 W_0 W0表示圆盘各位置的振幅,具体写为:
W 0 ( r , θ ) = U ( r ) cos ⁡ θ W_0\left( r,\theta \right) =U\left( r \right) \cos \theta W0(r,θ)=U(r)cosθ
U ( r ) U(r) U(r)表示在一定半径 r r r的圆周上的最大振幅。

对于 m m m个节径的振动,则写为:
W 0 ( r , θ ) = U ( r ) cos ⁡ m θ W_0\left( r,\theta \right) =U\left( r \right) \cos m\theta W0(r,θ)=U(r)cosmθ
因此,振幅方程可以写为:
W = U ( r ) cos ⁡ m θ cos ⁡ p t = U 2 [ cos ⁡ ( m θ + p t ) + cos ⁡ ( m θ − p t ) ] W=U\left( r \right) \cos m\theta \cos pt=\dfrac{U}{2}\left[ \cos \left( m\theta +pt \right) +\cos \left( m\theta -pt \right) \right] W=U(r)cosmθcospt=2U[cos(mθ+pt)+cos(mθpt)]
上式 U 2 cos ⁡ ( m θ + p t ) \dfrac{U}{2}\cos \left( m\theta +pt \right) 2Ucos(mθ+pt) U 2 cos ⁡ ( m θ − p t ) \dfrac{U}{2}\cos \left( m\theta -pt \right) 2Ucos(mθpt)都被称为动波。

当位移为 0 0 0时, cos ⁡ ( m θ ± p t ) = 0 \cos \left( m\theta \pm pt \right) =0 cos(mθ±pt)=0,解得节线相对于盘的运动方程为:
θ = i π 2 m ± p m t \theta =\frac{i\pi}{2m}\pm \frac{p}{m}t θ=2m±mpt
得到对应的角速度: d θ d t = ± p m \dfrac{d\theta}{dt}=\pm \dfrac{p}{m} dtdθ=±mp

因此“动波”有下列特性:
①全圆周上任何时间都有 2 m 2m 2m个节点、极大值和极小值;
②这些节点(与其他点一起)随时间以一定角速度 ± p m \pm \dfrac{p}{m} ±mp在圆周上旋转;
③两个动波具有相同的角频率和幅值,但旋转方向相反。

当盘以 ω \omega ω的速度旋转时,如果动波移动方向与 ω \omega ω相同,称为顺动波;反之称为逆动波。

逆动波相对于地面的角速度 ω 2 \omega_2 ω2为: ω 2 = p d m − ω \omega _2=\dfrac{p_d}{m}-\omega ω2=mpdω p d p_d pd是旋转情况下盘的自振频率,比静止盘要高)
可以看出,当 p d = m ω p_d=m\omega pd=时, ω 2 = 0 \omega_2=0 ω2=0,于是得出如下结论:

▶(逆动波)的移动速度和盘的旋转速度相等,波形将在空间停止不动,称为(驻波)。

6.4 盘振动的激振力

引起盘振动的激振力大致有三种来源:

(1)叶片受到周期性变化的气体力传递给盘;
(2)其它零件的力通过联接环或轴传递给盘;
(3)盘面气体压力不均,或有周期性变化。

第7章 发动机的振动与平衡

7.1 临界转速

▶轴的挠度达到最大值时,这时轴的转速就称为(临界转速)。

平衡转子

假设一个弯曲平衡的轴盘系统,盘的重心与轴线重合,忽略轴的质量,并忽略盘重产生的静挠度。会有两种情况:
(1)不管什么转速下,盘的重心始终在旋转轴线上,轴不发生任何挠度。

(2)旋转时,轴发生挠度,只有在特定转速(临界转速)下,盘的离心力与轴的弹性恢复力平衡,此时轴可以产生任何挠度。

盘的离心力为: m y ω 2 my\omega^2 myω2 轴的弹性恢复力为: C y Cy Cy C C C为刚性系数)

列出平衡方程: m y ω 2 = C y my\omega^2=Cy myω2=Cy ,解得临界转速为: ω c r = C m \omega _{cr}=\sqrt{\dfrac{C}{m}} ωcr=mC

综述:完全平衡的轴-盘系统除非在特定转速下,轴可以产生任何挠度外,其它情况下,轴都不会有挠度。(✔)

不平衡转子

假设盘的重心与旋转轴不重合,带有一定的偏心距 e e e,盘装在跨度中央,此时无陀螺力矩。轴旋转时会有两种情况:

在这里插入图片描述

(一)亚临界状态

平衡方程为:
m ω 2 ( y + e ) = C y m\omega ^2\left( y+e \right) =Cy mω2(y+e)=Cy
解得挠度 y y y为:
y = e C m ω 2 − 1 = e ( p ω ) 2 − 1 = ( ω p ) 2 e 1 − ( ω p ) 2 = ( ω ω c r ) 2 e 1 − ( ω ω c r ) 2 y=\frac{e}{\dfrac{C}{m\omega ^2}-1}=\dfrac{e}{\left( \dfrac{p}{\omega} \right) ^2-1}=\frac{\left( \dfrac{\omega}{p} \right) ^2e}{1-\left( \dfrac{\omega}{p} \right) ^2}=\dfrac{\left( \dfrac{\omega}{\omega _{cr}} \right) ^2e}{1-\left( \dfrac{\omega}{\omega _{cr}} \right) ^2} \\ y=mω2C1e=(ωp)21e=1(pω)2(pω)2e=1(ωcrω)2(ωcrω)2e
此时 ω < ω c r \omega<\omega_{cr} ω<ωcr,轮盘质心位于轴挠曲线的外侧。

(二)超临界状态

平衡方程为:
m ω 2 ( y − e ) = C y m\omega ^2\left( y-e \right) =Cy mω2(ye)=Cy
解得挠度 y y y为:
y = e 1 − C m ω 2 = e 1 − ( p ω ) 2 = ( ω p ) 2 e ( ω p ) 2 − 1 = ( ω ω c r ) 2 e ( ω ω c r ) 2 − 1 y=\frac{e}{1-\dfrac{C}{m\omega ^2}}=\frac{e}{1-\left( \dfrac{p}{\omega} \right) ^2}=\frac{\left( \dfrac{\omega}{p} \right) ^2e}{\left( \dfrac{\omega}{p} \right) ^2-1}=\frac{\left( \dfrac{\omega}{\omega _{cr}} \right) ^2e}{\left( \dfrac{\omega}{\omega _{cr}} \right) ^2-1} y=1mω2Ce=1(ωp)2e=(pω)21(pω)2e=(ωcrω)21(ωcrω)2e
此时 ω > ω c r \omega>\omega_{cr} ω>ωcr,轮盘质心位于轴挠曲线的内侧。

在这里插入图片描述

总结:

①在 ω = p = C m \omega =p=\sqrt{\dfrac{C}{m}} ω=p=mC 时,挠度 y y y将无限增大,远离此处,挠度明显减小。偏心距存在与否,并不影响临界转速;
②对于同一转子,平衡得越好, e e e值越小,同一转速下,挠度呈比例下降,良好的平衡能减少振动;
③图中左右两支曲线并不对称,左支代表亚临界状态,右支代表超临界状态;
④当转子由亚临界越过临界过渡到超临界时,质心将由外侧转向内侧。

▶不平衡转子旋转时,在临界转速以下,处于(亚临界)状态;在临界转速以上,处于(超临界)状态。

偏心距的存在与否不影响转子临界转速的数值,因此,对转子的平衡并不能减少振动。(✘)

不完全平衡的轴-盘系统除非在特定的转速下,轴才有挠度。(✘)

当转子由亚临界越过临界而过渡到超临界时,质心将由挠曲线内侧转向外侧。(✘)

✈[例1]有单盘实心轴转子,尺寸如下图所示。设盘的偏心距为 3 × 1 0 − 5 m 3\times10^{-5}\mathrm{m} 3×105m,求 n = 2000 n=2000 n=2000 3000 r p m 3000\mathrm{rpm} 3000rpm时,轴在装盘处的挠度。假设无摩擦和陀螺力矩。
在这里插入图片描述

由题目可知: E = 2.1 × 1 0 11 P a E=2.1\times10^{11}\mathrm{Pa} E=2.1×1011Pa J = π d 4 / 64 = 3.976 × 1 0 − 8 m 4 J=\pi d^4/64=3.976\times10^{-8}\mathrm{m^4} J=πd4/64=3.976×108m4 m = 5 k g m=5\mathrm{kg} m=5kg l = 1.2 m l=1.2\mathrm{m} l=1.2m a = 0.4 / 1.2 = 1 / 3 a=0.4/1.2=1/3 a=0.4/1.2=1/3

可算出轴在装盘处的刚性系数:
C = 3 E J a 2 ( 1 − a ) 2 l 3 = 2.935 × 1 0 5 N / m C=\frac{3EJ}{a^2\left( 1-a \right) ^2l^3}=2.935\times 10^5\mathrm{N}/\mathrm{m} C=a2(1a)2l33EJ=2.935×105N/m
临界转速:
ω c r = C m = 242.3 r a d / s n c r = 60 ω c r 2 π = 2314 r p m \omega _{cr}=\sqrt{\frac{C}{m}}=242.3 \mathrm{rad}/\mathrm{s} \\ n_{cr}=\frac{60\omega _{cr}}{2\pi}=2314 \mathrm{rpm} ωcr=mC =242.3rad/sncr=2π60ωcr=2314rpm
n = 2000 r p m n=2000\mathrm{rpm} n=2000rpm时,盘处于亚临界状态
ω = 2 π n 60 = 209.4 r a d / s \omega =\frac{2\pi n}{60}=209.4\mathrm{rad}/\mathrm{s} ω=602πn=209.4rad/s
故盘处挠度为:
y = e ( ω ω c r ) 2 1 − ( ω ω c r ) 2 = 3 × 1 0 − 5 × ( 209.4 242.3 ) 2 1 − ( 209.4 242.3 ) 2 = 8.85174 × 1 0 − 5 m y=\frac{e\left( \dfrac{\omega}{\omega _{cr}} \right) ^2}{1-\left( \dfrac{\omega}{\omega _{cr}} \right) ^2}=\dfrac{3\times 10^{-5}\times \left( \dfrac{209.4}{242.3} \right) ^2}{1-\left( \dfrac{209.4}{242.3} \right) ^2}=8.85174\times 10^{-5}\mathrm{m} y=1(ωcrω)2e(ωcrω)2=1(242.3209.4)23×105×(242.3209.4)2=8.85174×105m
n = 3000 r p m n=3000\mathrm{rpm} n=3000rpm时,盘处于超临界状态
ω = 2 π n 60 = 314.2 r a d / s \omega =\frac{2\pi n}{60}=314.2\mathrm{rad}/\mathrm{s} ω=602πn=314.2rad/s
故盘处挠度为:
y = e ( ω ω c r ) 2 ( ω ω c r ) 2 − 1 = 3 × 1 0 − 5 × ( 314.2 242.3 ) 2 ( 314.2 242.3 ) 2 − 1 = 7.40184 × 1 0 − 5 m y=\frac{e\left( \dfrac{\omega}{\omega _{cr}} \right) ^2}{\left( \dfrac{\omega}{\omega _{cr}} \right) ^2-1}=\frac{3\times 10^{-5}\times \left( \dfrac{314.2}{242.3} \right) ^2}{\left( \dfrac{314.2}{242.3} \right) ^2-1}=7.40184\times 10^{-5}\mathrm{m} y=(ωcrω)21e(ωcrω)2=(242.3314.2)213×105×(242.3314.2)2=7.40184×105m

7.2 轴质量对临界转速的影响

先讨论光轴(不带盘)的临界转速,对轴上一微元段进行受力分析:

在这里插入图片描述

把离心力作为分布载荷,建立微分方程如下:
d 2 d x 2 ( E J d 2 y d x 2 ) = q = m 1 ω 2 y \frac{d^2}{dx^2}\left( EJ\frac{d^2y}{dx^2} \right) =q=m_1\omega ^2y dx2d2(EJdx2d2y)=q=m1ω2y
m 1 m_1 m1为单位长度的质量,对于等截面的均质轴, E J EJ EJ为常数,令 a 4 = m 1 ω 2 E J a^4=\dfrac{m_1\omega ^2}{EJ} a4=EJm1ω2,故得:
d 4 y d x 4 = a 4 y \frac{d^4y}{dx^4}=a^4y dx4d4y=a4y
对于双简支梁,上述微分方程的特征方程为:
sin ⁡ a l = 0 \sin al=0 sinal=0
解得 ( a l ) i = i π , i = 1 , 2 , 3 ⋯ (al)_i=i\pi,i=1,2,3\cdots (al)i=,i=1,2,3故得一系列的临界转速值为:
ω c r = a i 2 E J m 1 = ( a l ) i 2 l 2 E J A ρ \omega _{cr}=a_{i}^{2}\sqrt{\frac{EJ}{m_1}}=\frac{\left( al \right) _{i}^{2}}{l^2}\sqrt{\frac{EJ}{A\rho}} ωcr=ai2m1EJ =l2(al)i2AρEJ
因此前三阶转速: ω c r , 1 : ω c r , 2 : ω c r , 3 = f c r , 1 : f c r , 2 : f c r , 3 = 1 : 4 : 9 \omega _{cr,1}:\omega _{cr,2}:\omega _{cr,3}=f_{cr,1}:f_{cr,2}:f_{cr,3}=1:4:9 ωcr,1:ωcr,2:ωcr,3=fcr,1:fcr,2:fcr,3=1:4:9

现在讨论考虑轴质量的单盘转子的临界转速。设盘装在双简支轴的中央,且轴的临界转速与分布质量的光轴一样。

分布质量的光轴可以折合为中央带集中质量的 m 折 m_{折} m的无重轴,折合质量可由下式解出:
ω c r , 1 = C m 折 = π 2 l 2 E J A ρ \omega _{cr,1}=\sqrt{\frac{C}{m_{\text{折}}}}=\frac{\pi ^2}{l^2}\sqrt{\frac{EJ}{A\rho}} ωcr,1=mC =l2π2AρEJ
再考虑轴中央装有盘的情形:
ω c r , 1 = C m 折 + m 盘 \omega _{cr,1}=\sqrt{\frac{C}{m_{\text{折}}+m_{\text{盘}}}} ωcr,1=m+mC
经过变换可得顿克(Dunkerley)公式:
1 ω 2 = 1 ω 0 2 + 1 ω 1 2 {\color{red} \frac{1}{\omega ^2}=\frac{1}{\omega _{0}^{2}}+\frac{1}{\omega _{1}^{2}}} ω21=ω021+ω121
此处 ω \omega ω = ω c r , 1 =\omega_{cr,1} =ωcr,1)是该系统一阶临界转速, ω 0 \omega_0 ω0 ω 1 \omega_1 ω1分别为光轴和单盘无重轴的临界转速。

注意:①只能用于一阶临界转速;②不考虑陀螺力矩;③该公式是近似的,当盘位置接近支承时,误差较大;对于悬臂转子误差更大;④计算值低于精确值。

多盘转子的临界转速

对顿克公式进行推广,可得:
1 ω c r 2 = 1 ω 0 2 + 1 ω 1 2 + 1 ω 2 2 + ⋯ \frac{1}{\omega _{cr}^{2}}=\frac{1}{\omega _{0}^{2}}+\frac{1}{\omega _{1}^{2}}+\frac{1}{\omega _{2}^{2}}+\cdots ωcr21=ω021+ω121+ω221+
其中, ω c r \omega_{cr} ωcr————考虑轴质量的多盘转子的一阶临界转速;

ω 0 \omega_{0} ω0————光轴的临界转速;

ω 1 \omega_{1} ω1————无重轴,只带盘1的系统临界转速;

ω 2 \omega_{2} ω2————无重轴,只带盘2的系统临界转速;

​ …

✈[例2]已知双支点等截面带盘的轴如下图所示,分别计算下列三种情况的临界转速:(1)光轴(不计盘质量);(2)单盘无重轴;(3)单盘计入轴质量。
在这里插入图片描述

已知:
E = 2.1 × 1 0 11 P a ρ = 7.8 × 1 0 3 k g / m 3 A = π d 2 / 4 = 7.069 × 1 0 − 4 m 2 J = π d 4 / 64 = 3.976 × 1 0 − 8 m 4 m = 5 k g l = 1.2 m a = 0.4 / 1.2 = 1 / 3 E=2.1\times 10^{11}\mathrm{Pa} \\ \rho =7.8\times 10^3\mathrm{kg}/\mathrm{m}^3 \\ A=\pi d^2/4=7.069\times10^{-4}\mathrm{m}^2 \\ J=\pi d^4/64=3.976\times 10^{-8}\mathrm{m}^4 \\ m=5\mathrm{kg} \\ l=1.2\mathrm{m} \\ a=0.4/1.2=1/3 E=2.1×1011Paρ=7.8×103kg/m3A=πd2/4=7.069×104m2J=πd4/64=3.976×108m4m=5kgl=1.2ma=0.4/1.2=1/3
(1)光轴:
ω c r ′ = π 2 l 2 E J A ρ = 266.7 r a d / s n c r ′ = 60 ω c r ′ 2 π = 2547 r p m \omega _{cr}^{\prime}=\frac{\pi ^2}{l^2}\sqrt{\frac{EJ}{A\rho}}=266.7\mathrm{rad}/\mathrm{s} \\ n_{cr}^{\prime}=\frac{60\omega _{cr}^{\prime}}{2\pi}=2547\mathrm{rpm} ωcr=l2π2AρEJ =266.7rad/sncr=2π60ωcr=2547rpm
(2)单盘无重轴:

轴在装盘处的刚性系数:
C = 3 E J a 2 ( 1 − a ) 2 l 3 = 2.935 × 1 0 5 N / m C=\frac{3EJ}{a^2\left( 1-a \right) ^2l^3}=2.935\times 10^5\mathrm{N}/\mathrm{m} C=a2(1a)2l33EJ=2.935×105N/m
临界转速:
ω c r ′ ′ = C m = 242.3 r a d / s n c r ′ ′ = 60 ω c r 2 π = 2314 r p m \omega _{cr}^{''}=\sqrt{\frac{C}{m}}=242.3 \mathrm{rad}/\mathrm{s} \\ n_{cr}^{''}=\frac{60\omega _{cr}}{2\pi}=2314 \mathrm{rpm} ωcr′′=mC =242.3rad/sncr′′=2π60ωcr=2314rpm
(3)单盘计轴质量:

根据顿克公式:
1 ω c r 2 = 1 ( ω c r ′ ) 2 + 1 ( ω c r ′ ′ ) 2 ω c r = 179.3 r a d / s n c r = 60 ω c r 2 π = 1712 r p m \frac{1}{\omega _{cr}^{2}}=\frac{1}{\left( \omega _{cr}^{\prime} \right) ^2}+\frac{1}{\left( \omega _{cr}^{''} \right) ^2} \\ \omega _{cr}=179.3\mathrm{rad}/\mathrm{s} \\ n_{cr}=\frac{60\omega _{cr}}{2\pi}=1712\mathrm{rpm} ωcr21=(ωcr)21+(ωcr′′)21ωcr=179.3rad/sncr=2π60ωcr=1712rpm

7.3 处理临界转速问题的方法

(1)将转子的临界转速调到发动机的最大转速以上

一般认为临界转速应高于最大工作转速的 30 % 30\% 30%,就可以避开大的振动。

(2)将转子的临界转速调到发动机的最低转速以下

(3)增加阻尼器或挠度阻尼器

▶对轴的挠度起到抑制效果最常用而有效的是(挤压油膜)阻尼器
(4)利用非线性的作用

(5)改善转子的平衡

7.4 发动机转子的平衡

▶发动机转子不平衡的表现形式有:(静不平衡)和(动不平衡)两种。

转子外径D与其长度L满足D/L<5时,不论其工作转速高低都只需进行静平衡。(✘)[D/L>5,需静平衡]

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值