类型六:调节规律
06 知识回顾
稳态下压气机和涡轮共同工作条件
1.转速一致
对于单转子涡喷发动机,压气机转子转速等于涡轮转子的转速,即
n c = n T n_c=n_T nc=nT
2.流量连续流过涡轮的燃气流量 q m , g q_{m,g} qm,g等于流入压气机的空气流量 q m , a q_{m,a} qm,a加上进入燃烧室的燃油流量 q m , f q_{m,f} qm,f,再减去引气系统引走的空气流量 q m , c o l q_{m,col} qm,col,即
q m , g = q m , a + q m , f − q m , c o l q_{m,g}=q_{m,a}+q_{m,f}-q_{m,col} qm,g=qm,a+qm,f−qm,col
此式可以写成:
q m , g = β q m , a q_{m,g}=\beta q_{m,a} qm,g=βqm,a
其中:
β = q m , a + q m , g − q m , c o l q m , a = 1 + f − v c o l \beta =\frac{q_{m,a}+q_{m,g}-q_{m,col}}{q_{m,a}}=1+f-v_{col} β=qm,aqm,a+qm,g−qm,col=1+f−vcol
3.压力平衡涡轮进口处燃气总压等于压气机进口处空气总压乘以燃烧室总压恢复系数,即
p 3 ∗ = σ b p 2 ∗ p_{3}^{*}=\sigma _bp_{2}^{*} p3∗=σbp2∗
4.功率平衡涡轮提供给压气机的功率与压气机压缩空气所消耗的功率平衡,即
N c = N T η m N_c=N_T\eta _m Nc=NTηm考虑到:
N c = q m , a w c , N T = q m , g w T = β q m , a w T N_c=q_{m,a}w_c,N_T=q_{m,g}w_T=\beta q_{m,a}w_T Nc=qm,awc,NT=qm,gwT=βqm,awT
所以:
w c = w T β η m w_c=w_T\beta \eta _m wc=wTβηm涡轮落压比
π T ∗ = [ σ e A 5 q ( λ 5 ) σ t A t q ( λ t ) ] 2 n ′ n ′ + 1 \pi _{T}^{*}=\left[ \frac{\sigma _eA_5q\left( \lambda _5 \right)}{\sigma _tA_tq\left( \lambda _t \right)} \right] ^{\frac{2n^{\prime}}{n^{\prime}+1}} πT∗=[σtAtq(λt)σeA5q(λ5)]n′+12n′
几何不可调时,当涡轮导向器最小截面和喷管都处于临界或超临界状态,落压比为常数。
π T ∗ n ′ + 1 2 n ′ = σ e A 5 σ t A t = c o n s t {\pi _{T}^{*}}^{\frac{n^{\prime}+1}{2n^{\prime}}}=\frac{\sigma _eA_5}{\sigma _tA_t}=const πT∗2n′n′+1=σtAtσeA5=const两种调节规律
1. n = n m a x = c o n s t n=n_{max}=const n=nmax=const和 A 5 = c o n s t A_5=const A5=const的最大工作状态调节规律
2. n = n m a x = c o n s t n=n_{max}=const n=nmax=const和 T 3 ∗ = c o n s t T_3^*=const T3∗=const的最大工作状态条件概率
1.某单轴涡喷发动机,在飞行高度 H = 0 H=0 H=0,马赫数 M a = 0 Ma=0 Ma=0以最大转速工作时,压气机的 π c ∗ = 12.0 \pi_c^*=12.0 πc∗=12.0,效率 η c ∗ = 0.85 \eta_c^*=0.85 ηc∗=0.85,涡轮后燃气总温 T 4 ∗ = 1000 K T_4^*=1000\ \mathrm{K} T4∗=1000 K,若该发动机采用转速 n = n= n=常数,喷管喉部面积 A 5 = A_5= A5=常数的调节规律,当 H = 11 k m H=11\ \mathrm{km} H=11 km( T 0 ′ = 216.5 K T_{0}^{\prime}=216.5 \mathrm{K} T0′=216.5K), M a = 2.0 Ma=2.0 Ma=2.0时, π c ∗ ′ = 8.0 {\pi _{c}^{*}}^{\prime}=8.0 πc∗′=8.0, η c ∗ ′ = 0.82 {\eta _{c}^{*}}^{\prime}=0.82 ηc∗′=0.82,试计算:当飞行条件从 H = 0 H=0 H=0, M a = 0 Ma=0 Ma=0变到 H = 11 k m H=11\ \mathrm{km} H=11 km, M a = 2.0 Ma=2.0 Ma=2.0时,涡轮前、后燃气总温 T 3 ∗ ′ {T_{3}^{*}}^{\prime} T3∗′、 T 4 ∗ ′ {T_{4}^{*}}^{\prime} T4∗′各为多少?若发动机采用转速 n = n= n=常数,涡轮前燃气总温 T 3 ∗ = T_3^*= T3∗=常数的调节规律,试计算: H = 11000 m H=11000\ \mathrm{m} H=11000 m, M a = 2.0 Ma=2.0 Ma=2.0时,涡轮后燃气总温 T 4 ∗ ′ ′ {T_{4}^{*}}^{^{''}} T4∗′′为多少?当飞行条件从 H = 0 H=0 H=0, M a = 0 Ma=0 Ma=0变到 H = 11000 m H=11000\ \mathrm{m} H=11000 m, M a = 2.0 Ma=2.0 Ma=2.0时,喷管喉部面积 A 5 A_5 A5变化了多少?(假设涡轮导向器,喷管均处于超临界状态,空气和燃气的流量相同,定压比热容分别为 1.005 k J / ( k g ⋅ K ) 1.005\ \mathrm{kJ/(kg\cdot K)} 1.005 kJ/(kg⋅K)、 1.158 k J / ( k g ⋅ K ) 1.158\ \mathrm{kJ/(kg\cdot K)} 1.158 kJ/(kg⋅K);绝热指数分别为 1.40 1.40 1.40、 1.33 1.33 1.33,其他各种损失系数和部件效率等于 1.0 1.0 1.0)
解:空气和燃气的流量相同,即 β = 1 \beta=1 β=1
H = 0 H=0 H=0、 M a = 0 Ma=0 Ma=0,进气道内为绝能流动,可以得到: T 1 ∗ = T 0 ∗ = T 0 = 288.15 K T_{1}^{*}=T_{0}^{*}=T_0=288.15 \mathrm{K} T1∗=T0∗=T0=288.15K
功率平衡: w c = w T β η m w_c=w_T\beta \eta _m wc=wTβηm,由于 β = 1 \beta=1 β=1、 η m = 1 \eta_m=1 ηm=1,可以得到 w c = w T w_c=w_T wc=wT,即:
c p T 1 ∗ η c ∗ ( π c ∗ γ − 1 γ − 1 ) = c p ′ ( T 3 ∗ − T 4 ∗ ) \frac{c_pT_{1}^{*}}{\eta _{c}^{*}}\left( {\pi _{c}^{*}}^{\frac{\gamma -1}{\gamma}}-1 \right) =c_{p}^{\prime}\left( T_{3}^{*}-T_{4}^{*} \right) ηc∗cpT1∗(πc∗γγ−1−1)=cp′(T3∗−T4∗)
可以算出涡轮前总温:
T 3 ∗ = c p T 1 ∗ c p ′ η c ∗ ( π c ∗ γ − 1 γ − 1 ) + T 4 ∗ = 1005 × 288.15 1158 × 0.85 ( 1 2 1.4 − 1 1.4 − 1 ) + 1000 = 1304.19 K T_{3}^{*}=\frac{c_pT_{1}^{*}}{c_{p}^{\prime}\eta _{c}^{*}}\left( {\pi _{c}^{*}}^{\frac{\gamma -1}{\gamma}}-1 \right) +T_{4}^{*}=\frac{1005\times 288.15}{1158\times 0.85}\left( 12^{\frac{1.4-1}{1.4}}-1 \right) +1000=1304.19\,\,\mathrm{K} T3∗=cp′η