蓝桥2017省赛 k倍区间(前缀和+简单数论+分类讨论)

k倍区间
在这里插入图片描述在这里插入图片描述
一开始想的还是暴力枚举,但是自己知道会超时,所以没有去写,后面看了别人的代码,用的是前缀和,其实前不久用了蛮多次前缀和,但是这一次没有想起来
以后看到有关区间和的要首先想到能不能用前缀和去处理
这个题不仅是前缀和,还夹杂了数论的一点简单知识
要求一个区间的和为k的倍数,前缀和处理后,我们记这个区间为sum[i]-sum[j],但是如果直接这样判断是否为k的倍数的话,还是要去枚举j.所以还是会超时
由(sum[i]-sum[j])%k=0
得到sum[i]%k=sum[j]%k
这时候就想到开一个数组ans去记录每一个i对应的和取余k得到的不同余数的个数
拿样例来说
前缀和为1,3,6,10,15
1%2=1
3%2=1
6%2=0
10%2=0
15%2=1
分两种i情况,余数为0和余数不为0
余数不为0且相等的有3个,任意取出两个组合,即为C3(2)
余数为0有2个,任意取出两个组合,即为C2(2),但它们自身也可作为一个单独的区间,所以C2(2)+2
由此得出结论
若余数不为0且相等的有m1个
余数为0的有m2个
最终的结果为Cm1(2)+Cm2(2)+m2
=m1*(m1-1)/2+m2*(m2-1)/2+m2

#include<bits/stdc++.h>
using namespace std;
long long int a[100005];
long long int sum[100005]; 
long long int ans[100005];
long long int res=0;
long long int m1=0;
int main() {
	int n, k;
	cin >> n >> k;
	for (int i = 0; i < n; i++) {
		cin >> a[i];
	}
	sum[0]=a[0];
    //前缀和 
	for (int i = 1; i < n; i++) {
		sum[i] = sum[i - 1] + a[i];
		//cout<<sum[i]<<endl;
	}
	for(int i=0;i<n;i++)
	{
		ans[sum[i]%k]++;
	}
	long long int m=ans[0];
    m1=m*(m-1)/2+m;
	long long int m2=0;
	for(int i=1;i<=100000;i++)
	{
		//cout<<ans[i]<<" ";
		long long int k=(ans[i]*(ans[i]-1))/2;
		m2+=k;
	}
	res=m1+m2;
	cout<<res<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值