k倍区间
一开始想的还是暴力枚举,但是自己知道会超时,所以没有去写,后面看了别人的代码,用的是前缀和,其实前不久用了蛮多次前缀和,但是这一次没有想起来
以后看到有关区间和的要首先想到能不能用前缀和去处理
这个题不仅是前缀和,还夹杂了数论的一点简单知识
要求一个区间的和为k的倍数,前缀和处理后,我们记这个区间为sum[i]-sum[j],但是如果直接这样判断是否为k的倍数的话,还是要去枚举j.所以还是会超时
由(sum[i]-sum[j])%k=0
得到sum[i]%k=sum[j]%k
这时候就想到开一个数组ans去记录每一个i对应的和取余k得到的不同余数的个数
拿样例来说
前缀和为1,3,6,10,15
1%2=1
3%2=1
6%2=0
10%2=0
15%2=1
分两种i情况,余数为0和余数不为0
余数不为0且相等的有3个,任意取出两个组合,即为C3(2)
余数为0有2个,任意取出两个组合,即为C2(2),但它们自身也可作为一个单独的区间,所以C2(2)+2
由此得出结论
若余数不为0且相等的有m1个
余数为0的有m2个
最终的结果为Cm1(2)+Cm2(2)+m2
=m1*(m1-1)/2+m2*(m2-1)/2+m2
#include<bits/stdc++.h>
using namespace std;
long long int a[100005];
long long int sum[100005];
long long int ans[100005];
long long int res=0;
long long int m1=0;
int main() {
int n, k;
cin >> n >> k;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
sum[0]=a[0];
//前缀和
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
//cout<<sum[i]<<endl;
}
for(int i=0;i<n;i++)
{
ans[sum[i]%k]++;
}
long long int m=ans[0];
m1=m*(m-1)/2+m;
long long int m2=0;
for(int i=1;i<=100000;i++)
{
//cout<<ans[i]<<" ";
long long int k=(ans[i]*(ans[i]-1))/2;
m2+=k;
}
res=m1+m2;
cout<<res<<endl;
}