图的基本概念


图的定义

图的定义一

图G = (V, E)是一个系统 ,其中
(1) V ≠ ∅ V \ne \varnothing V=是一个有限集合;V中的每一元素 v ∈ V v\in V vV都称为图G的一个结点(node ,vertex), V称为图G的结点集;
(2)E是一个有限集合; E中的每一元素 e ∈ E e\in E eE都称为图G的一条边(edge) ;E称为图G的边集。

此定义的优点是简单,适应面广;缺点是没有规定清楚点、线之间的关系。

图的定义二

图G = (V, E)是一个系统 ,其中
(1) V ≠ ∅ V \ne \varnothing V=是一个有限集合;V中的每一元素 v ∈ V v\in V vV都称为图G的一个结点(node ,vertex), V称为图G的结点集;
(2) E ⊆ V × V E\subseteq V\times V EV×V是一个有限集合,一个V上的关系; E中的每一元素 ( u , v ) ∈ E (u,v)\in E (u,v)E都称为图G的一条边(edge),这里 u , v ∈ V u,v\in V u,vV;E称为图G的边集。

此定义的优点是简单,规定了清楚的点、线之间的关系,很适合简单图、特别是有向图(比如第二章的关系图、哈斯图);缺点是无法表示平行边,因此不适合多重图(比如上节的七桥图)

图的定义三

G = ( V , ∑ , E ) G = (V,\sum, E) G=(V,,E)是一个系统 ,其中
(1) V ≠ ∅ V \ne \varnothing V=是一个有限集合;V中的每一元素 v ∈ V v\in V vV都称为图G的一个结点(node ,vertex), V称为图G的结点集;
(2) ∑ \sum 是一有限集合; ∑ \sum 中的每一元素 σ \sigma σ都称为图G中的一个标号(label); ∑ \sum 称为图G的标号集
(3) E ⊆ V × ∑ × V E\subseteq V\times \sum \times V EV××V是一个有限集合,一个三元关系; E中的每一元素 ( u , σ , v ) ∈ E (u,\sigma,v)\in E (u,σ,v)E都称为图G的一条边(edge)或弧(arc),此边起自u而终于v ;称u是此边的起点,称 σ \sigma σ是此边的标号,称v是此边的终点 ,起点和终点统称为边的端点,这里 ( u , v ∈ V , σ ∈ ∑ ) (u,v\in V,\sigma \in \sum) (u,vV,σ); E称为图G的边集。

  • 此定义是由美国哈佛大学爱伦堡教授给出的;
  • 此定义规定了严格的点、线之间的关系,适应面很广、特别适合多重图(比如上节的七桥图);缺点是边表示比较复杂,简单图一般不采用。
  • 标号实际上是为了区别两点间的平行边而设的;标号集的大小一般就是图中平行边的最大条数(图的重数,参见下面概念)。
  • 当图的重数为1,即图无平行边时(简单图,参见下面概念),有 ∑ = { σ 1 } \sum = \{\sigma_1\} ={σ1},各边标号一样,全为 σ 1 \sigma_1 σ1.这时可取掉各边标号及标号集,定义3就变成了定义2;所以定义3适合于图的一般情况,特别是(有平行边的)多重图,而定义2适合于(无平行边的)简单图。

图的定义四

G = ( V , E , γ ) G=(V,E, \gamma) G=(V,E,γ)是一个系统,其中
(1) V ≠ ∅ V \ne \varnothing V=是一个有限集合;V中的每一元素 v ∈ V v\in V vV都称为图G的一个结点(node ,vertex), V称为图G的结点集;
(2) E E E是一个有限集合; E中的每一元素 e ∈ E e\in E eE都称为图G的一条边(edge);E称为图G的边集。
(3) γ \gamma γ是边到结点集的一个关联函数,即
γ : E → 2 V ( 无向图 ) 或 γ : E → V × V ( 有向图 ) \gamma :E \to 2^V(无向图)或\gamma :E \to V\times V(有向图) γ:E2V(无向图)γ:EV×V(有向图)
γ \gamma γ将E中的每条边 e ∈ E e\in E eE与结点集V中的一个二元子集 { u , v } ∈ 2 V \{u,v\}\in 2^V {u,v}2V(或 { u , v } ⊆ V ) \{u,v\}\subseteq V) {u,v}V)相关联,或与结点集V上的一个二元组 { u , v } ∈ 2 V \{u,v\}\in 2^V {u,v}2V(或 { u , v } ⊆ V × V ) \{u,v\}\subseteq V\times V) {u,v}V×V)相关联,即
γ ( e ) = { u , v } ( 无向图 ) 或 γ ( e ) = ( u , v ) \gamma(e)=\{u,v\}(无向图)或\gamma(e)=(u,v) γ(e)={u,v}(无向图)γ(e)=u,v
称u是此边的起点,称v是此边的终点 ,结点u和v统称为边的端点

  • 此定义是对美国库曼教授所给定义的一个修正;
  • 此定义的优点是适应面较广,尤其是将边看作是和结点同样的独立的研究对象,边不再是由结点表示的一个附属对象,用函数概念规定了点、线之间的严格关联关系,这样一来,就便于边概念的进一步推广(比如引出超图概念);缺点是关联函数表示比较烦琐,简单图一般不采用。

图论的概念术语

(n,m)图

|V| = n,|E| = m,即有n个结点和m条边的图称为 ( n, m ) 图。

无向边(undirected edges简edges)

在定义3下,若边 ( u , σ , v ) (u,\sigma , v) (u,σ,v)与边 ( v , σ , u ) (v,\sigma ,u) (v,σ,u)表示同一条边,则称此边为无向边。

无向图(undirected graph简graph)

所有的边都是无向边的图称为无向图。记为G。

有向边(directed arc简arc或arrow)

在定义3下,若边(u, , v)与边(v, ,u)表示不同的边,则称此边为有向边。

有向图(directed graph简digraph)

所有的边都是有向边的图称为有向图。记为D。

混和图(mixed graph)

既有有向边又有无向边的图称为混和图。

空图(empty graph)

V = ∅ ( 当然 E = ∅ ) V=\varnothing (当然 E=\varnothing) V=(当然E=),即没有一个结点的图称为空图。

零图(null graph)

E = ∅ E=\varnothing E=即没有一条边的图称为零图。

平凡图(trivial graph)

|V| = 1,即只有一个结点的图称为平凡图。

二边相邻(adjacent)

在图中,若两条边有一公共端点,则称此二边相邻。

二结点相邻(adjacent)

若两个结点是同一条边的两个端点,则称此二结点相邻。

一结点与一边相关联(incident)

若一结点是一边的一个端点,则称此结点与该边相关联。

孤立点(isolated vertex)

不与任何边相关联的结点称为孤立点。

自环(loop )

两个端点相同的边称为自环。

平行边(parallel edges )

有相同端点(相同的起点,相同的终点)的两条边称为平行边。

重数(multiplicity)

两结点间平行边的条数称为平行边的重数。

多重图(multiply graph)

具有平行边的图称为多重图;多重图的重数是图中平行边重数的最
大者

简单图(单图、单纯图(simple graph))

无平行边、无自环的图称为简单图。

图的阶(order)

图中结点的个数|V|称为图的阶

完全图(complete graph)

每一对不同的结点间都有一条边的简单图称为完全图。
n个结点m条边的无向完全图: m = n ( n − 1 ) 2 m=\dfrac{n(n-1)}{2} m=2n(n1)
n个结点m条边的有向完全图: m = n ( n − 1 ) m=n(n-1) m=n(n1)
n个结点的无向完全图记为: K n K_n Kn

子图与补图

子图(subgraph)

G = ( V , E ) 和 G ′ = ( V ′ , E ′ ) G=(V, E)和G'=(V', E') G=(V,E)G=(V,E)是两个(有向的或无向的)图。
(1) 若 V ⊆ V V\subseteq V VV E ⊆ E E\subseteq E EE,则称 G ′ G' G G G G的子图;
(2) 若 V ⊂ V V\subset V VV E ⊂ E E\subset E EE,则称 G ′ G' G G G G的真子图(proper-);
(3) 若 V = V V= V V=V E = E E= E E=E,则称 G ′ G' G G G G的生成子图(spanning-);
(4)若 V = V V= V V=V E = E E= E E=E,或 V = V V= V V=V E = ∅ E= \varnothing E=,称 G ′ G' G G G G的平凡子图(trivial-);即:
图G 本身和G的零图是G的平凡子图。

商图(quotient graph)

G = ( V , E ) G=(V, E) G=(V,E)是一(有向的或无向的)图。 R ⊆ V × V R\subseteq V\times V RV×V是一结点集V上的等价关系。
那么, 定义图G关于等价关系R的商图为简单图
G R = ( V R , E R ) G^R=(V^R,E^R) \quad GR=(VR,ER)其中:
V R = V / R = { [ v ] R ∣ v ∈ R } V^R=V/R=\{[v]_R|v\in R\} VR=V/R={[v]RvR}是V关于等价关系R的商集;
E R = { [ u ] R , [ v ] R ∣ [ u ] R ∈ V R ∧ [ v ] R ∈ V R ∧ ( ∃ u ′ ∈ [ u ] R ) ( ∃ v ′ ∈ [ v ] R ) ( ( u ′ , v ′ ) ∈ E ) } E^R=\{[u]_R,[v]_R|[u]_R\in V^R\land [v]_R\in V^R \land (\exists u'\in [u]_R) (\exists v'\in [v]_R) ((u',v')\in E)\} ER={[u]R,[v]R[u]RVR[v]RVR(u[u]R)(v[v]R)((u,v)E)}

补图(complement graph)

G = ( V , E ) G=(V, E) G=(V,E)是一(有向的或无向的)图。 G ′ = ( V ′ , E ′ ) G'=(V', E') G=(V,E)是与图G相应的完全图。 定义图G的补图 G ‾ = ( V , E ‾ ) \overline{G}= (V, \overline{E}) G=(V,E),其中:
E ‾ = E ′ \overline{E}=E' E=E\E

结点的度

结点的出度(out-degree)

有向图中以结点v为起点的有向边的条数称为结点v的出度。记为 d e g ← ( v ) \overleftarrow{deg}(v) deg (v)

结点的进度(入度(in-degree))

有向图中以结点v为终点的有向边的条数称为结点v的进度。记为 d e g → ( v ) \overrightarrow{deg}(v) deg (v)

结点的度(degree)

图中与结点v关联的边的条数称为结点v的度。记为 d e g ( v ) deg(v) deg(v)

奇结点(odd vertex)

度数为奇数的结点称为奇结点。

偶结点(even vertex)

度数为偶数的结点称为偶结点。

图G的最小度(minimal degree)

图G中各结点度数的最小者。记为 δ ( G ) \delta (G) δ(G)

图G的最大度: (maximum degree)

图G中各结点度数的最大者。记为 Δ ( G ) \Delta(G) Δ(G)

正则图(regular graph)

若图G中各结点的度数都相等,则称图G 是正则图。 显然,这时 δ ( G ) = Δ ( G ) \delta(G)=\Delta(G) δ(G)=Δ(G)

k-正则的(k- regular)

若图G中各结点的度数都相等,且为k ,则称图G 是 k-正则的,或k度正则的。 显然,这时 δ ( G ) = Δ ( G ) = k \delta(G)=\Delta(G)= k δ(G)=Δ(G)=k

悬挂点(hang vertex)

度数为1的结点称为悬挂点。

悬挂边(hang edge)

与悬挂点关联的边称为悬挂边。

定理1

  1. 无向图G中,所有结点的度之和等于边数的二倍;
  2. 有向图G中,所有结点的进度之和等于出度之和等于边数;

定理2.任何图中所有奇结点的度数之和是偶数。

推论1.(握手引理) 在一次集会上和奇数个人握过手的人的
数目是偶数。

图的同构(isomorphism of graphs)

同构的定义

(1)称 G = ( V , E ) G=(V,E) G=(V,E) G ’ = ( V ’ , E ’ ) G’=(V’,E’) G=(V,E)二图同构,记为 G ≅ G ′    ⟺    G\cong G'\iff GG
存在两个双射函数 φ : V → V ′ , ψ : E → E ′ \varphi: V \rightarrow V',\psi: E \rightarrow E' φ:VV,ψ:EE
使得 ψ ( u , v ) = ( u ′ , v ′ )    ⟹    φ ( u ) = u ′ ∧ φ ( v ) = v ′ \psi (u,v)=(u',v')\implies \varphi(u)=u'\land \varphi(v)=v' ψ(u,v)=(u,v)φ(u)=uφ(v)=v
(2)称 G = ( V , E , γ ) G=(V,E,\gamma) G=(V,E,γ) G ’ = ( V ’ , E ’ , γ ′ ) G’=(V’,E’,\gamma') G=(V,E,γ)二图同构,记为 G ≅ G ′    ⟺    G\cong G'\iff GG
存在两个双射函数 φ : V → V ′ , ψ : E → E ′ \varphi: V \rightarrow V',\psi: E \rightarrow E' φ:VV,ψ:EE,使得
ψ ( e ) = e ′ ∧ γ ( e ) = { u , v } ∧ γ ′ ( e ′ ) = { u ′ , v ′ }    ⟹    φ ( u ) = u ′ ∧ φ ( v ) = v ′ \psi (e)=e'\land \gamma(e)=\{u,v\}\land \gamma'(e')=\{u',v'\}\implies \varphi(u)=u'\land \varphi(v)=v' ψ(e)=eγ(e)={u,v}γ(e)={u,v}φ(u)=uφ(v)=v
ψ ( e ) = e ′ ∧ γ ( e ) = ( u , v ) ∧ γ ′ ( e ′ ) = ( u ′ , v ′ )    ⟹    φ ( u ) = u ′ ∧ φ ( v ) = v ′ \psi (e)=e'\land \gamma(e)=(u,v)\land \gamma'(e')=(u',v')\implies \varphi(u)=u'\land \varphi(v)=v' ψ(e)=eγ(e)=(u,v)γ(e)=(u,v)φ(u)=uφ(v)=v

图的同构远比代数系统的同构复杂。这是因为图的同构在同态公式中牵扯着两个(甚至三个,考虑定义三)双射函数的交叉关系,而代数系统的同构在同态公式中只有一个双射函数。因此图的同构问题不象代数系统的同构问题那样有许多进展、有几个定理好用,迄今为止,没有任何进展,没有任何定理可用,仅仅只能用定义。

性质

若两个图同构,则它们必须满足:
(1)结点个数相等;
(2)边数相等;
(3)对应结点的进度、出度、度数均相等;
(4)度数相同的结点个数相等;
(5)平行边对应,重数相等;
(6)自环对应;悬挂点对应;孤立点对应;
(7)结点间的相邻关系对应;边间的相邻关系对应;结点与边的关联关系对应;
(8)圈对应;路对应;
(9)对应圈的长度相等;对应路的长度相等;

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值