代数系统简介

代数系统的基本概念

定义1.运算(operation)

对于任何自然数 n ⩾ 1 , n n\geqslant 1,n n1,n元运算f是一个从n维叉积 X n X^n Xn X X X的函数。
f : X n → X f :X^n\to X fXnX
封闭性:对于任意n个元素,有
x 1 , x 2 … x n ∈ X    ⟹    f ( x 1 , x 2 … , x n ) ∈ X x_1,x_2\dots x_n \in X \implies f(x_1,x_2\dots,x_n) \in X x1,x2xnXf(x1,x2,xn)X

x 1 , x 2 … x n ∈ X n    ⟹    f ( x 1 , x 2 … , x n ) ∈ X x_1,x_2\dots x_n \in X^n \implies f(x_1,x_2\dots,x_n) \in X x1,x2xnXnf(x1,x2,xn)X

定义2.代数系统,代数结构(algebra structure)

一个代数系统(代数结构,简称代数)A是如下的一个有序元组:
A = ( X , O 1 , O 2 . . . , O m , R 1 , R 2 . . . , R n , c 1 , c 2 . . . , c l ) A=(X,O_1,O_2...,O_m,R_1,R_2...,R_n,c_1,c_2...,c_l) A=(X,O1,O2...,Om,R1,R2...,Rn,c1,c2...,cl)

其中:
1. X ≠ ∅ X\ne \varnothing X=是一个任意集合,称为母集或者承载子(carrier)
2. O 1 , O 2 . . . , O m O_1,O_2...,O_m O1,O2...,Om是X 上的m个运算( m ⩾ 1 m\geqslant 1 m1
3. R 1 , R 2 . . . , R n R_1,R_2...,R_n R1,R2...,Rn是x上的n个(序)关系( n ⩾ 0 n\geqslant 0 n0
4. c 1 , c 2 . . . , c l ∈ X c_1,c_2...,c_l \in X c1,c2...,clX是X 中的l个特殊元素( l ⩾ 0 l \geqslant 0 l0),称为常项(constants)

  • 当X是有限集合时,称A为有限代数系统;
  • 当X是无限集合时,称A为无限代数系统;
  • 在一个代数系统中运算的集合不能是空的,必须至少有一个X上的运算。代数系统中各个运算的元(阶)数可能是不一样的,即每个运算都有自己的运算元数。

代数系统的基本性质

定义3.结合律 交换律(associative law,commutative law)

( X , ∗ ) ( X, \ast) (X,)是任一代数系统, ∗ \ast 是X上的二元运算。则称
1. ∗ \ast 运算满足结合律    ⟺    \iff
( ∀ x ∈ X ) ( ∀ y ∈ Y ) ( ∀ z ∈ Z ) ( ( x ∗ y ) ∗ z = x ∗ ( y ∗ z ) ) (\forall x\in X)(\forall y\in Y)(\forall z\in Z) ((x \ast y) \ast z=x \ast (y \ast z)) (xX)(yY)(zZ)((xy)z=x(yz))
2. ∗ 满足交换律    ⟺    \ast 满足交换律 \iff 满足交换律
( ∀ x ∈ X ) ( ∀ y ∈ Y ) ( x ∗ y = y ∗ x ) (\forall x\in X)(\forall y\in Y) (x \ast y=y \ast x) (xX)(yY)(xy=yx)

定义4.幺元 零元(identity element,zero element)

( X , ∗ ) (X, \ast ) (X,)是代数系统, ∗ \ast 是X上的二元运算, x 0 ∈ X x_0 \in X x0X。则称
1. x 0 是关于 ∗ 运算的幺元    ⟺    x_0是关于 \ast 运算的幺元\iff x0是关于运算的幺元
( ∀ x ∈ X ) ( x 0 ∗ x = x ∗ x o = x ) (\forall x \in X)(x_0 \ast x=x \ast x_o=x) (xX)(x0x=xxo=x)
2. x 0 是关于 ∗ 运算的零元    ⟺    x_0是关于 \ast 运算的零元\iff x0是关于运算的零元
( ∀ x ∈ X ) ( x 0 ∗ x = x ∗ x o = x 0 ) (\forall x \in X)(x_0 \ast x=x \ast x_o=x_0) (xX)(x0x=xxo=x0)

定理1.幺元、零元的唯一性

( X , ∗ ) (X, \ast ) (X,)是代数系统, ∗ \ast 是X上的二元运算。则

  1. 若关于 ∗ \ast 运算的幺元存在,则必是唯一的;
  2. 若关于 ∗ \ast 运算的零元存在,则必是唯一的。

定义5.逆元 可逆性(inverse element,invertibility)

( X , ∗ , e ) (X, \ast ,e) (X,,e)是代数系统, ∗ \ast 是X上的二元运算,e是关于 ∗ \ast 运算的幺元。

  1. 对于某一元素 x ∈ X x\in X xX, 若存在着某个元素 y ∈ X y\in X yX,使得
    x ∗ y = y ∗ x = e x \ast y=y \ast x=e xy=yx=e
    则称y是x关于 ∗ \ast 运算的逆元,并称x关于 ∗ \ast 运算是可逆的(invertible),同时称x是
    关于 ∗ \ast 运算的可逆元;
  2. ∗ \ast 运算在X上是可逆的
       ⟺    ( ∀ x ∈ X ) ( ∃ y ∈ X ) ( x ∗ y = y ∗ x = e ) \iff(\forall x\in X)(\exists y \in X)(x \ast y=y \ast x=e) (xX)(yX)(xy=yx=e)
       ⟺    X 中的每个元素都是关于 ∗ 运算的可逆元 \iff X中的每个元素都是关于 \ast 运算的可逆元 X中的每个元素都是关于运算的可逆元

定理2.逆元的唯一性

( X , ∗ , e ) (X, \ast , e) (X,e)是代数系统, ∗ \ast 是X上的二元运算并且满足结合律,e是幺元。对任何元素 x ∈ X x\in X xX,若x的逆元存在,则必是唯一的。

定义6.消去律(cancellation law)

消去律有三种形式:

  1. ( X , ∗ ) (X, \ast ) (X,)是代数系统, ∗ \ast 是X上的二元运算。
    称 ∗ 运算满足消去律    ⟺    称 \ast 运算满足消去律\iff 运算满足消去律
    a ) ( ∀ x ∈ X ) ( ∀ y ∈ X ) ( ∀ z ∈ X ) ( x ∗ y = x ∗ z    ⟹    y = z ) a)(\forall x \in X)(\forall y \in X)(\forall z \in X)(x \ast y=x \ast z\implies y=z) a)(xX)(yX)(zX)(xy=xzy=z)
    b ) ( ∀ x ∈ X ) ( ∀ y ∈ X ) ( ∀ z ∈ X ) ( y ∗ x = z ∗ x    ⟹    y = z ) b)(\forall x \in X)(\forall y \in X)(\forall z \in X)(y \ast x=z \ast x\implies y=z) b)(xX)(yX)(zX)(yx=zxy=z)
  2. ( X , ∗ , 0 ) (X, \ast ,0) (X,,0)是代数系统, ∗ \ast 是X上的二元运算, 0是零元。
    称 ∗ 运算满足消去律    ⟺    称 \ast 运算满足消去律\iff 运算满足消去律
    a ) ( ∀ x ∈ X ) ( ∀ y ∈ X ) ( ∀ z ∈ X ) ( x ≠ 0 ∧ x ∗ y = x ∗ z    ⟹    y = z ) a)(\forall x \in X)(\forall y \in X)(\forall z \in X)(x\ne 0 \land x \ast y=x \ast z\implies y=z) a)(xX)(yX)(zX)(x=0xy=xzy=z)
    b ) ( ∀ x ∈ X ) ( ∀ y ∈ X ) ( ∀ z ∈ X ) ( x ≠ 0 ∧ y ∗ x = z ∗ x    ⟹    y = z ) b)(\forall x \in X)(\forall y \in X)(\forall z \in X)(x\ne 0 \land y \ast x=z \ast x\implies y=z) b)(xX)(yX)(zX)(x=0yx=zxy=z)
  3. ( X , ∗ , Δ ) (X, \ast ,\Delta) (X,,Δ)是代数系统, ∗ , Δ \ast , \Delta ,Δ都是X上的二元运算。
    称 ∗ 及 Δ 运算满足消去律    ⟺    称 \ast 及\Delta 运算满足消去律\iff Δ运算满足消去律
    a ) ( ∀ x ∈ X ) ( ∀ y ∈ X ) ( ∀ z ∈ X ) ( x ∗ y = x ∗ z ∧ x Δ y = x Δ z    ⟹    y = z ) a)(\forall x \in X)(\forall y \in X)(\forall z \in X)(x \ast y=x \ast z\land x\Delta y=x\Delta z\implies y=z) a)(xX)(yX)(zX)(xy=xzxΔy=xΔzy=z)
    b ) ( ∀ x ∈ X ) ( ∀ y ∈ X ) ( ∀ z ∈ X ) ( y ∗ x = z ∗ x ∧ y Δ x = z Δ x    ⟹    y = z ) b)(\forall x \in X)(\forall y \in X)(\forall z \in X)(y \ast x=z \ast x\land y\Delta x=z\Delta x\implies y=z) b)(xX)(yX)(zX)(yx=zxyΔx=zΔxy=z)

定义7.分配律(distributive law)

( X , ∗ , Δ ) (X, \ast ,\Delta) (X,,Δ)是代数系统, ∗ , Δ \ast , \Delta ,Δ都是X上的二元运算。
1. 称 ∗ 对 Δ 运算满足分配率    ⟺    称 \ast 对\Delta 运算满足分配率\iff Δ运算满足分配率
a ) ( ∀ x ∈ X ) ( ∀ y ∈ X ) ( ∀ z ∈ X ) ( x ∗ ( y Δ z ) = ( x ∗ y ) Δ ( x ∗ z ) ) a)(\forall x \in X)(\forall y \in X)(\forall z \in X)(x \ast (y\Delta z)=(x \ast y)\Delta (x \ast z)) a)(xX)(yX)(zX)(x(yΔz)=(xy)Δ(xz))
b ) ( ∀ x ∈ X ) ( ∀ y ∈ X ) ( ∀ z ∈ X ) ( ( y Δ z ) ∗ x = ( y ∗ x ) Δ ( z ∗ x ) ) b)(\forall x \in X)(\forall y \in X)(\forall z \in X)((y\Delta z) \ast x=(y \ast x)\Delta (z \ast x)) b)(xX)(yX)(zX)((yΔz)x=(yx)Δ(zx))
2. 称 Δ 对 ∗ 运算满足分配率    ⟺    称\Delta 对 \ast 运算满足分配率\iff Δ运算满足分配率
a ) ( ∀ x ∈ X ) ( ∀ y ∈ X ) ( ∀ z ∈ X ) ( x Δ ( y ∗ z ) = ( x Δ y ) ∗ ( x Δ z ) ) a)(\forall x \in X)(\forall y \in X)(\forall z \in X)(x\Delta(y \ast z)=(x\Delta y) \ast (x\Delta z)) a)(xX)(yX)(zX)(xΔ(yz)=(xΔy)(xΔz))
b ) ( ∀ x ∈ X ) ( ∀ y ∈ X ) ( ∀ z ∈ X ) ( ( y ∗ z ) Δ x = ( y Δ x ) ∗ ( z Δ x ) ) b)(\forall x \in X)(\forall y \in X)(\forall z \in X)((y \ast z)\Delta x=(y\Delta x) \ast (z\Delta x)) b)(xX)(yX)(zX)((yz)Δx=(yΔx)(zΔx))

定义8.反身律 鞋袜律

( X , ∗ , ♣ ) (X, \ast ,\clubsuit) (X,,)是代数系统, ∗ \ast 是X上的二元运算, ♣ \clubsuit 是X上的一元运算。

  1. ♣ \clubsuit 运算满足反身律    ⟺    ( ∀ x ∈ X ) ( ( x ♣ ) ♣ = x ) \iff (\forall x \in X)((x^\clubsuit)^\clubsuit=x) (xX)((x)=x)
  2. ♣ \clubsuit 运算关于 ∗ \ast 运算满足鞋袜律    ⟺    ( ∀ x ∈ X ) ( ∀ y ∈ X ) ( ( x ∗ y ) ♣ = y ♣ ∗ x ♣ ) \iff (\forall x \in X)(\forall y \in X)((x \ast y)^\clubsuit=y^\clubsuit \ast x^\clubsuit) (xX)(yX)((xy)=yx)

定义9.反身律 de Morgan律

( X , ∗ , Δ , ♣ ) (X, \ast ,\Delta,\clubsuit) (X,,Δ,)是代数系统, ∗ , Δ \ast , \Delta ,Δ都是X上的二元运算, ♣ \clubsuit 是X上的一元运算。

  1. ♣ \clubsuit 满足反身律    ⟺    ( ∀ x ∈ X ) ( ( x ♣ ) ♣ = x ) \iff (\forall x \in X)((x^\clubsuit)^\clubsuit=x) (xX)((x)=x)
  2. ♣ \clubsuit 运算关于 ∗ \ast Δ \Delta Δ运算满足de Morgan律    ⟺    \iff
    a ) ( ∀ x ∈ X ) ( ∀ y ∈ X ) ( ( x ∗ y ) ♣ = x ♣ Δ y ♣ ) ; a)(\forall x \in X)(\forall y\in X)((x \ast y)^\clubsuit=x^\clubsuit\Delta y^\clubsuit); a)(xX)(yX)((xy)=xΔy);
    b ) ( ∀ x ∈ X ) ( ∀ y ∈ X ) ( ( x Δ y ) ♣ = x ♣ ∗ y ♣ ) b)(\forall x \in X)(\forall y\in X)((x\Delta y)^\clubsuit=x^\clubsuit \ast y^\clubsuit) b)(xX)(yX)((xΔy)=xy)

子代数系统

定义10.子代数系统(subalgebra system)

A = ( X , O 1 , O 2 , . . . , O m ) A=(X,O_1,O_2,...,O_m) A=(X,O1,O2,...,Om)是代数系统,其中 O 1 , O 2 , . . . , O m O_1,O_2,...,O_m O1,O2,...,Om是X上的m个运算,其元数分别为 p 1 , p 2 . . . p m p_1,p_2...p_m p1,p2...pm。若有子集 S ⊆ X S\subseteq X SX S ≠ ∅ S\ne\varnothing S=,对于A中的每一个运算都有其子关系,使得子关系也是S 上的 P i P_i Pi元运算,从而使得 ( S , O S 1 , O S 2 , . . . , O S m ) (S,O_{S1},O_{S2},...,O_{Sm}) (S,OS1,OS2,...,OSm)也构成一代数系统,则 称此代数系统是A的子代数系统,记为
A s = ( S , O 1 , O 2 , . . . , O m ) A_s=(S,O_1,O_2,...,O_m) As=(S,O1,O2,...,Om)

定理3.遗传性定理

( X , ∗ ) (X, \ast ) (X)是代数系统, ∗ \ast 是X上的二元运算, ( S , ∗ ) (S, \ast ) (S ( X , ∗ ) (X, \ast ) (X的子代数系统,则
1. ∗ \ast 运算在X上有结合律    ⟹    ∗ \implies \ast 运算在S上有结合律
2. ∗ \ast 运算在X上有交换律    ⟹    ∗ \implies \ast 运算在S上有交换律

代数系统的同态和同构

代数系统间的同态

定义1.同类型(same type)

称两个代数系统
A = ( X , O 1 , O 2 , . . . , O m ) A=(X,O_1,O_2,...,O_m) A=(X,O1,O2,...,Om) B = ( Y , O 1 ′ , O 2 ′ , . . . , O m ′ ) B=(Y,O_1',O_2',...,O_m') B=(Y,O1,O2,...,Om)
是同类型的代数系统    ⟺    \iff
1. m = n m=n m=n
2. O i O_i Oi运算和对应的 O i ′ O_i' Oi运算的元数相同

定义2.同态(homomorphism)

称两个同类型的代数系统
A = ( X , O 1 , O 2 , . . . , O m ) A=(X,O_1,O_2,...,O_m) A=(X,O1,O2,...,Om) B = ( Y , O 1 ′ , O 2 ′ , . . . , O m ′ ) B=(Y,O_1',O_2',...,O_m') B=(Y,O1,O2,...,Om)
是同态的    ⟺    \iff 存在一个函数 h : X → Y h:X\to Y h:XY使得:
对任何一对运算 O i O_i Oi O i ′ O_i' Oi都满足如下的同态公式:
∀ ( x 1 , x 2 , . . . x p i ) ∈ X p i h ( O i ( x 1 , x 2 , . . . x p i ) ) = O I ′ ( h ( x 1 ) , h ( x 2 ) , . . . , h ( x p i ) ) \forall(x_1,x_2,...x_{pi})\in X^{pi} \\\\ h(O_i(x_1,x_2,...x_{pi}))=O_I'(h(x_1),h(x_2),...,h(x_{pi})) (x1,x2,...xpi)Xpih(Oi(x1,x2,...xpi))=OI(h(x1),h(x2),...,h(xpi))

定义3.同态象 单同态 满同态

设代数系统 A = ( X , O 1 , O 2 , . . . , O m ) A=(X,O_1,O_2,...,O_m) A=(X,O1,O2,...,Om)同态于 B = ( Y , O 1 ′ , O 2 ′ , . . . , O m ′ ) B=(Y,O_1',O_2',...,O_m') B=(Y,O1,O2,...,Om),其同态函数为 h : X → Y h:X\to Y h:XY

  1. 称X在h下的象集 h ( X ) ⊆ Y h(X)\subseteq Y h(X)Y与B的所有运算一起组成的
    C = ( h ( X ) , O 1 ′ , O 2 ′ . . . O m ′ ) C=(h(X),O_1',O_2'...O_m') C=(h(X),O1,O2...Om)是A的同态象
  2. 若h是单射函数,则称h是从A到B的单同态函数并称C为A的单同态象;
  3. 若h是满射函数,则称h是从A到B的满同态函数;并称 B为A的满同态
    象(这时有 h ( X ) = Y , C = B h(X)=Y ,C=B h(X)=Y,C=B) 。

定理1

设代数系统 A = ( X , O 1 , O 2 , . . . , O m ) A=(X,O_1,O_2,...,O_m) A=(X,O1,O2,...,Om)同态于 B = ( Y , O 1 ′ , O 2 ′ , . . . , O m ′ ) B=(Y,O_1',O_2',...,O_m') B=(Y,O1,O2,...,Om),其同态函数为 h : X → Y h:X\to Y h:XY。则A的同态象 C = ( h ( X ) , O 1 ′ , O 2 ′ . . . O m ′ ) C=(h(X),O_1',O_2'...O_m') C=(h(X),O1,O2...Om)是B 的子代数系统

定理2.同态遗传定理

设 ( X , ∗ ) 和 ( Y , o ) 是两个代数系统, ∗ 和 o 分别是 X 和 Y 上的二元运算, h 是从 ( X , ∗ ) 到 ( Y , o ) 的满同态函数,那么: 设(X, \ast )和(Y,o) 是两个代数系统, \ast 和 o 分别是X和Y上的二元运 算,h 是从(X, \ast )到(Y,o )的满同态函数,那么: (X)(Yo)是两个代数系统,o分别是XY上的二元运算,h是从(X)(Yo)的满同态函数,那么:
1. ∗ \ast 运算满足结合律    ⟹    \implies o运算满足结合律;
2. ∗ \ast 运算满足交换律    ⟹    \implies o运算满足交换律;
3. e是关于 ∗ * 运算的幺元    ⟹    h ( e ) \implies h(e) h(e)是关于o运算的幺元;
4. 0是关于 ∗ * 运算的零元    ⟹    h ( 0 ) \implies h(0) h(0)是关于o运算的零元;
5. x关于 ∗ \ast 运算有逆元 x − 1    ⟹    h ( x ) x^{-1} \implies h(x) x1h(x)关于o运算的逆元是 h ( x − 1 ) h(x^{-1}) h(x1),
[ h ( x ) ] − 1 = h ( x − 1 ) [h(x) ]^{-1} = h(x^{-1}) [h(x)]1=h(x1)

定义4.同构(isomorphism)

设代数系统 A = ( X , O 1 , O 2 , . . . , O m ) A=(X,O_1,O_2,...,O_m) A=(X,O1,O2,...,Om)同态于 B = ( Y , O 1 ′ , O 2 ′ , . . . , O m ′ ) B=(Y,O_1',O_2',...,O_m') B=(Y,O1,O2,...,Om),其同态函数为 h : X → Y h:X\to Y h:XY。若h是双射函数,则称h是从A到B的同构函数,记为 h : A ≅ B h:A\cong B hAB;并且这时称A和B同构,记为 A ≅ B A\cong B AB

同态和同构概念要求两个代数系统必须是同类型的。
同构概念要求两个集合必须是等势的(即 ∣ X ∣ = ∣ Y ∣ |X|=|Y| X=Y)。
同构概念是双向的、相互的、可逆的。
同态概念是单方向的、不可逆的。

定理3.代数系统间的同构关系是X上的等价关系。

  • 自反性
  • 对称性
  • 传递性
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值