图论与代数系统课堂测验

判断题解答

F F T F F   F F T T T   F T T F T FFTFF\ FFTTT\ FTTFT FFTFF FFTTT FTTFT

  1. 〈 S , ∗ 〉 〈S,\ast〉 S,是一个含幺半群,如果运算 ∗ \ast 满足消去律,那么 〈 S , ∗ 〉 〈S,\ast〉 S,是一个群

参考有限无限环中无零因子,逆元和消去律之间关系
〈 N , + 〉 〈N,+〉 N,+是题目的一个反例

即证如果运算 ∗ \ast 满足消去律,则 〈 S , ∗ 〉 〈S,\ast〉 S,也满足群的三个性质:

  1. 封闭性:对于任意 a , b ∈ S a,b\in S a,bS,有 a ∗ b ∈ S a\ast b\in S abS
    由于 〈 S , ∗ 〉 〈S,\ast〉 S,是含幺半群,因此满足结合律,即 ( a ∗ b ) ∗ c = a ∗ ( b ∗ c ) (a\ast b)\ast c=a\ast (b\ast c) (ab)c=a(bc)对于任意 c ∈ S c\in S cS成立。因此, ( a ∗ b ) ∈ S (a\ast b)\in S (ab)S,即 S S S对于 ∗ \ast 运算是封闭的。
  2. 逆元素存在性:对于任意 a ∈ S a\in S aS,存在 b ∈ S b\in S bS,使得 a ∗ b = b ∗ a = e a\ast b=b\ast a=e ab=ba=e,其中 e e e S S S的单位元素。
    由于运算 ∗ \ast 满足消去律,因此对于任意 a ∈ S a\in S aS,方程 a ∗ x = e a\ast x=e ax=e有唯一解 x ∈ S x\in S xS。令 b = x b=x b=x,则有 a ∗ b = e a\ast b=e ab=e
    现在我们需要证明 b ∗ a = e b\ast a=e ba=e。假设 b ∗ a ≠ e b\ast a\neq e ba=e,则根据消去律,我们有:
    a ∗ ( b ∗ a ) = ( a ∗ b ) ∗ a = e ∗ a = a ∗ e = a a\ast(b\ast a)=(a\ast b)\ast a=e\ast a=a\ast e=a a(ba)=(ab)a=ea=ae=a
    由消去律得:
    a ∗ ( b ∗ a ) = a ∗ e = a a\ast(b\ast a)=a\ast e=a a(ba)=ae=a
    因此, b ∗ a b\ast a ba是方程 a ∗ x = a a\ast x=a ax=a的另一个解。由于方程 a ∗ x = a a\ast x=a ax=a只有唯一解 a ∗ e = a a\ast e=a ae=a,因此 b ∗ a = a ∗ e = a b\ast a=a\ast e=a ba=ae=a。因此, b b b a a a的逆元素,即存在 b ∈ S b\in S bS,使得 a ∗ b = b ∗ a = e a\ast b=b\ast a=e ab=ba=e
    综上所述,若方程 a ∗ x = e a\ast x=e ax=e有唯一解 x ∈ S x\in S xS,对于任意 a ∈ S a\in S aS,存在 b ∈ S b\in S bS,使得 a ∗ b = b ∗ a = e a\ast b=b\ast a=e ab=ba=e,即 〈 S , ∗ 〉 〈S,\ast〉 S,满足逆元素存在性。
    但可能没有这个解,故不一定有逆元
  3. 结合律:对于任意 a , b , c ∈ S a,b,c\in S a,b,cS,有 ( a ∗ b ) ∗ c = a ∗ ( b ∗ c ) (a\ast b)\ast c=a\ast (b\ast c) (ab)c=a(bc)
    由于 〈 S , ∗ 〉 〈S,\ast〉 S,是含幺半群,因此满足结合律。因此, 〈 S , ∗ 〉 〈S,\ast〉 S,也满足结合律。
    综上所述,如果运算 ∗ \ast 满足消去律,则 〈 S , ∗ 〉 〈S,\ast〉 S,是一个群。
  1. 含幺半群的子半群一定是含幺半群

整数加法半群的子群偶数加法半群(去0),没有幺元。

  1. 幺元是群的唯一幂等元

假设a是幂等元,那么对任意群中元素b,ba=baa,依照消去率,b = ba;同理 ab = aab,因此 b = ab,依照幺元的概念,a = e;既群中幂等元是幺元

  1. 〈 G , ∗ 〉 〈G,\ast〉 G,是群,则G必有二阶元素

一个循环群Z,它包含了所有整数以加法运算为群运算,但是它没有任何二阶元素。因为对于任意一个整数 n ∈ Z n\in Z nZ,如果n是一个二阶元素, 则有n+n=0,这显然是不可能的。

  1. 〈 G , ∗ 〉 〈G,\ast〉 G,是群, ∣ G ∣ = n , 设 x ∈ G , 若 x m = e , m ∈ I , 则 m ∣ n |G|=n,设x\in G,若x^m=e,m\in I,则m|n G=n,xG,xm=e,mI,mn

本题想考察:
〈 G , ∗ 〉 〈G, \ast 〉 G,是群。 ∀ g ∈ G \forall g \in G gG

  1. 若g的阶有限,设其为k,从而 g k = e g^k=e gk=e。则
    1. ∀ m ∈ N , g m = e    ⟺    k ∣ m \forall m \in N,g^m=e \iff k|m mN,gm=ekm(k整除m,即 m = n ∗ k m=n\ast k m=nk)
    2. ∀ m , n ∈ N , g m = g n    ⟺    k ∣ m − n \forall m,n \in N,g^m=g^n \iff k|m-n m,nN,gm=gnkmn
  2. 若g的阶无限,则 ∀ m , n ∈ N , g m = g n    ⟹    m = n \forall m,n \in N,g^m=g^n \implies m=n m,nN,gm=gnm=n

若考察定理7,n应为g的阶而不是群的阶

或拉格朗日定理:群内元素的阶一定整除群的阶
参考上述定义可知题目为错

  1. 〈 N m , + m , × m 〉 〈N_m,+_m,\times_m〉 Nm,+m,×m,当m为合数时, 〈 N m , + m , × m 〉 〈N_m,+_m,\times_m〉 Nm,+m,×m是整环

m为素数才是

  1. 循环群的子代数系统一定是循环群

子代数系统不行, 〈 Z , + 〉 → 〈 N , + 〉 〈Z,+〉\to 〈N,+〉 Z,+N,+

若是子群,则可证
证明如下:假设H不是循环群,但是G的子群。有 g k i ∈ H , g k i ∉ < g d > , k i = q d + r g^{ki}\in H,g^{ki}\notin <g^d>,ki=qd+r gkiH,gki/<gd>,ki=qd+r
由群元素的可逆,运算封闭可知:
g q d ∈ H , q , r 是整数, 0 < r < d g^{qd}\in H,q,r是整数,0<r< d gqdH,q,r是整数,0<r<d
g − q d g k i = g r ∈ H g^{-qd}g^{ki}=g^r\in H gqdgki=grH
d = m i n { k 1 , k 2 . . . k m } , r < d d=min\{k_1,k_2...k_m\},r<d d=min{k1,k2...km},r<d,故而矛盾,假设不成立

8. G = { 1 , 3 , 4 , 5 , 9 } G=\{1,3,4,5,9\} G={1,3,4,5,9},则 〈 G , × 11 〉 〈G, \times_{11} 〉 G,×11是群

检验其4要素,均满足,是群

  1. 〈 G , ∗ 〉 〈G,\ast〉 G,是群,|G|=6,则它一定没有四阶子群

根据 Lagrange 定理,群 G 的任何子群的阶数必须是G阶数的约数。

  1. 没有非平凡子群的有限群一定是循环群

等价于不是循环群就有非平凡子群
假设G是非循环群, ∀ a ∈ G , 集合 G ′ = { . . . , a − 1 , e , a 1 , a 2 . . . } \forall a \in G,集合G'=\{...,a^{-1},e,a^1,a^2...\} aG,集合G={...,a1,e,a1,a2...}在G的运算下成群。则 G ′ G' G是G的真子群,则G有非平凡子群

  1. 循环群有且只有两个生成元

a k = a l , a k 是生成元,则另一个也是 a^k=a^l,a^k是生成元,则另一个也是 ak=al,ak是生成元,则另一个也是

  1. 除环是含幺的无零因子环

每个非零元都有(乘法)逆元的含幺环称为除环。
除环要成为整环,差乘法交换律;整环要成为除环,差(非零元)有乘法逆元 ;

  1. 循环群设 〈 N , + 4 〉 〈N,+_4〉 N,+4与设 〈 { 1 , − 1 , i , − i } , × 〉 〈\{1,-1,i,-i\},\times〉 {11ii},×同构

f : N → 1 , − 1 , i , − i f:N→{1,-1,i,-i} f:N1,1,i,i为一个双射。由于 f f f是双射,所以 f ( 0 ) = 1 f(0)=1 f(0)=1。因为 f f f是同态映射,所以对于任意的 a , b ∈ N a,b∈N a,bN,都有 f ( a + b ) = f ( a ) × f ( b ) f(a+b)=f(a)×f(b) f(a+b)=f(a)×f(b)。因此,我们可以得到:
f ( 0 + 0 ) = f ( 0 ) × f ( 0 ) f(0+0)=f(0)×f(0) f(0+0)=f(0)×f(0)
f ( 0 + 1 ) = f ( 0 ) × f ( 1 ) f(0+1)=f(0)×f(1) f(0+1)=f(0)×f(1)
f ( 0 + 2 ) = f ( 0 ) × f ( 2 ) f(0+2)=f(0)×f(2) f(0+2)=f(0)×f(2)
f ( 0 + 3 ) = f ( 0 ) × f ( 3 ) f(0+3)=f(0)×f(3) f(0+3)=f(0)×f(3)
由于 f ( 0 ) = 1 f(0)=1 f(0)=1,所以我们可以得到:
f ( 1 ) = ± i , f ( 2 ) = ± 1 , f ( 3 ) = ± i f(1)=±i,f(2)=±1,f(3)=±i f(1)=±i,f(2)=±1,f(3)=±i
因此,我们可以得到:
N = 〈 4 〉 = 〈 1 + i , i , − 1 − i , − i 〉 = 〈 − 1 − i , − i , 1 + i , i 〉 = 〈 − 4 〉 N=〈4〉=〈1+i,i,-1-i,-i〉=〈-1-i,-i,1+i,i〉=〈-4〉 N=4=1+i,i,1i,i=1i,i,1+i,i=4
因此,循环群设 〈 N , + 4 〉 〈N,+_4〉 N,+4与设 〈 1 , − 1 , i , − i , × 〉 〈{1,-1,i,-i},\times〉 11ii,×同构

  1. 整环一定是域

整环是交换含幺的无零因子环,它与域概念仅差每个非零元都有(乘法)逆元。但在有限环的情况下,无零因子    ⟺    \iff 每个非零元都有乘法逆元。

  1. 〈 F , ⊕ , ⊗ 〉 〈F, \oplus , \otimes〉 F,,是域, 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,, 〈 F , ⊕ , ⊗ 〉 〈F, \oplus , \otimes〉 F,,的子环,则 〈 R , ⊕ , ⊗ 〉 〈R, \oplus ,\otimes〉 R,,是整环

关于 ⊕ \oplus 交换,关于 ⊗ \otimes 含幺,无零因子,由定义易知

第二题解答

(10%)设a是10阶群的生成元,则 a 3 , a 4 a^3,a^4 a3,a4是几阶元素?

10阶,5阶, 3 ∗ 10 = 30 , 4 ∗ 5 = 20 3\ast 10=30,4\ast 5=20 310=30,45=20

第三题解答

(20%)设 〈 G , ∗ 〉 〈G,\ast〉 G,是交换群,e是 ∗ \ast 的幺元, 〈 S , ∗ 〉 〈S,\ast〉 S, 〈 G , ∗ 〉 〈G,\ast〉 G,的子群,定义G上的二元关系R如下:
∀ x , y ∈ G , ( x , y ) ∈ R    ⟺    ( ∃ a ∈ S ) ( x ∗ a = a − 1 ∗ y ) \forall x,y\in G,(x,y)\in R \iff (\exists a\in S)(x\ast a=a^{-1}\ast y) x,yG,(x,y)R(aS)(xa=a1y)
(1)证明:R是G上的等价关系
(2)设 〈 G , ∗ 〉 = ( N 6 , + 6 ) , S = ( [ 0 ] 6 , [ 3 ] 6 ) 〈G,\ast〉=(N_6,+_6),S=([0]_6,[3]_6) G,=(N6,+6),S=([0]6,[3]6),求出所有等价类

(1) 要证明R是G上的等价关系,需要证明R满足自反性、对称性和传递性。
自反性:对于任意 x ∈ G x\in G xG,由于 e ∈ S e\in S eS x ∗ e = e − 1 ∗ x = x x\ast e=e^{-1}\ast x=x xe=e1x=x,所以 ( x , x ) ∈ R (x,x)\in R (x,x)R。因此,R满足自反性。
对称性:对于任意 x , y ∈ G x,y\in G x,yG,若 ( x , y ) ∈ R (x,y)\in R (x,y)R,则存在 a ∈ S a\in S aS使得 x ∗ a = a − 1 ∗ y x\ast a=a^{-1}\ast y xa=a1y。由于G是交换群,所以 a − 1 ∗ y = y ∗ a − 1 a^{-1}\ast y=y\ast a^{-1} a1y=ya1。又因为S是G的子群,所以 a − 1 ∈ S a^{-1}\in S a1S。因此, ( y , x ) ∈ R (y,x)\in R (y,x)R。所以R满足对称性。
传递性:对于任意 x , y , z ∈ G x,y,z\in G x,y,zG,若 ( x , y ) ∈ R , ( y , z ) ∈ R (x,y)\in R,(y,z)\in R (x,y)R,(y,z)R,则存在 a , b ∈ S a,b\in S a,bS使得 x ∗ a = a − 1 ∗ y , y ∗ b = b − 1 ∗ z x\ast a=a^{-1}\ast y,y\ast b=b^{-1}\ast z xa=a1y,yb=b1z。将两式相乘得到 ( x ∗ a ) ∗ ( y ∗ b ) = ( a − 1 ∗ y ) ∗ ( b − 1 ∗ z ) (x\ast a)\ast (y\ast b)=(a^{-1}\ast y)\ast (b^{-1}\ast z) (xa)(yb)=(a1y)(b1z)由于G是交换群,所以 x ∗ ( a ∗ b ) = ( a − 1 ∗ b − 1 ) ∗ z x\ast (a\ast b)=(a^{-1}\ast b^{-1})\ast z x(ab)=(a1b1)z又因为S是G的子群,所以 a ∗ b , b − 1 ∗ a − 1 ∈ S a\ast b,b^{-1}\ast a^{-1}\in S ab,b1a1S。因此, x ∗ ( a ∗ b ) = ( b − 1 ∗ a − 1 ) ∗ z x\ast (a\ast b)=(b^{-1}\ast a^{-1})\ast z x(ab)=(b1a1)z ( x , z ) ∈ R (x,z)\in R (x,z)R。所以R满足传递性。
综上所述,R满足自反性、对称性和传递性,因此R是G上的等价关系。

(2)由交换与群定义可知, x ∗ a ∗ a = y x\ast a \ast a=y xaa=y(交换右半式,右乘a)
[ 0 ] 6 + [ 0 ] 6 + [ 0 ] 6 = [ 0 ] 6 , [ 0 ] 6 + [ 3 ] 6 + [ 3 ] 6 = [ 0 ] 6 , 则 { [ 0 ] 6 , [ 0 ] 6 } [0]_6+[0]_6+[0]_6=[0]_6,[0]_6+[3]_6+[3]_6=[0]_6,则\{[0]_6,[0]_6\} [0]6+[0]6+[0]6=[0]6,[0]6+[3]6+[3]6=[0]6,{[0]6,[0]6}是个等价类,由于是类,去重有: { [ 0 ] 6 } \{[0]_6\} {[0]6}
[ 1 ] 6 + [ 0 ] 6 + [ 0 ] 6 = [ 1 ] 6 , [ 1 ] 6 + [ 3 ] 6 + [ 3 ] 6 = [ 1 ] 6 , 则 { [ 1 ] 6 , [ 1 ] 6 } [1]_6+[0]_6+[0]_6=[1]_6,[1]_6+[3]_6+[3]_6=[1]_6,则\{[1]_6,[1]_6\} [1]6+[0]6+[0]6=[1]6,[1]6+[3]6+[3]6=[1]6,{[1]6,[1]6}是个等价类,由于是类,去重有: { [ 1 ] 6 } \{[1]_6\} {[1]6}
以此类推,6个等价类,为 N 6 N_6 N6的6个元素单独成类

第四题解答

(20%)已知 〈 S 1 , ⊕ , ⊗ 〉 〈S_1, \oplus , \otimes〉 S1,, 〈 S 2 , ⊕ , ⊗ 〉 〈S_2, \oplus , \otimes〉 S2,,是环 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,的两个子环
(1) 〈 S 1 ∩ S 2 , ⊕ , ⊗ 〉 〈S_1\cap S_2, \oplus , \otimes〉 S1S2,, 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,的子环吗,给出理由
(2)如果 〈 S 1 , ⊕ , ⊗ 〉 〈S_1, \oplus , \otimes〉 S1,, 〈 S 2 , ⊕ , ⊗ 〉 〈S_2, \oplus , \otimes〉 S2,,都是无零因子环,那么 〈 S 1 ∪ S 2 , ⊕ , ⊗ 〉 〈S_1\cup S_2, \oplus , \otimes〉 S1S2,,一定是无零因子环吗,给出理由

设〈 R , ⊕ , ⊗ 〉 设〈R, \oplus , \otimes〉 设〈R,,是代数系统, ⊕ 和 ⊗ \oplus 和\otimes 是R上的两个二元运算,若 〈 R , ⊕ 〉 〈R, \oplus〉 R,是交换群, 〈 R , ⊗ 〉 〈R, \otimes〉 R,是半群, ⊗ 对 ⊕ \otimes 对 \oplus 满足分配率,则是环
(1) 首先,由于 S 1 ∩ S 2 S_1\cap S_2 S1S2 S 1 S_1 S1 S 2 S_2 S2的交集,所以它包含在这两个子环中。因此,它也包含在环R中。
其次,我们需要证明对于任意 x , y ∈ S 1 ∩ S 2 x,y\in S_1\cap S_2 x,yS1S2, x ⊕ y x\oplus y xy, x ⊗ y x\otimes y xy, − x -x x都属于 S 1 ∩ S 2 S_1\cap S_2 S1S2. 由于 x , y ∈ S 1 ∩ S 2 x,y\in S_1\cap S_2 x,yS1S2, 所以 x , y ∈ S 1 x,y\in S_1 x,yS1 x , y ∈ S 2 x,y\in S_2 x,yS2. 因为 S 1 S_1 S1 S 2 S_2 S2都是子环,所以 x ⊕ y x\oplus y xy, x ⊗ y x\otimes y xy, − x -x x都属于 S 1 S_1 S1, 同时也都属于 S 2 S_2 S2. 因此,根据交集的定义,我们可以得出结论:对于任意 x , y ∈ S 1 ∩ S 2 x,y\in S_1\cap S_2 x,yS1S2, x ⊕ y x\oplus y xy, x ⊗ y x\otimes y xy, − x -x x都属于 S 1 ∩ S 2 S_1\cap S_2 S1S2.
综上所述,我们证明了 〈 S 1 ∩ S 2 , ⊕ , ⊗ 〉 〈S_1\cap S_2, \oplus , \otimes〉 S1S2,,是一个子环。

(2) 不一定。设 R = Z R=\mathbb{Z} R=Z ⊕ = + 6 \oplus = +_6 =+6, ⊗ = × 6 \otimes = \times_6 =×6. 设 S 1 = 2 Z S_1=2\mathbb{Z} S1=2Z S 2 = 3 Z S_2=3\mathbb{Z} S2=3Z。那么,虽然这两个子环都没有零因子,但是它们的并集却有零因子:6。

整体试卷

判断题 50%

1,判断题10%

  1. 〈 S , ∗ 〉 〈S,\ast〉 S,是一个含幺半群,如果运算 ∗ \ast 满足消去律,那么 〈 S , ∗ 〉 〈S,\ast〉 S,是一个群
  2. 含幺半群的子半群一定是含幺半群
  3. 幺元是群的唯一幂等元
  4. 〈 G , ∗ 〉 〈G,\ast〉 G,是群,则G必有二阶元素
  5. 〈 G , ∗ 〉 〈G,\ast〉 G,是群, ∣ G ∣ = n , 设 x ∈ G , 若 x m = e , m ∈ I , 则 m ∣ n |G|=n,设x\in G,若x^m=e,m\in I,则m|n G=n,xG,xm=e,mI,mn
  6. 〈 N m , + m , × m 〉 〈N_m,+_m,\times_m〉 Nm,+m,×m,当m为合数时, 〈 N m , + m , × m 〉 〈N_m,+_m,\times_m〉 Nm,+m,×m是整环
  7. 循环群的子代数系统一定是循环群
    8. G = { 1 , 3 , 4 , 5 , 9 } G=\{1,3,4,5,9\} G={1,3,4,5,9},则 〈 G , × 11 〉 〈G, \times_{11} 〉 G,×11是群
  8. 〈 G , ∗ 〉 〈G,\ast〉 G,是群,|G|=6,则它一定没有四阶子群
  9. 没有非平凡子群的有限群一定是循环群
  10. 循环群有且只有两个生成元
  11. 除环是含幺的无零因子环
  12. 循环群设 〈 N , + 4 〉 〈N,+_4〉 N,+4与设 〈 { 1 , − 1 , i , − i } , × 〉 〈\{1,-1,i,-i\},\times〉 {11ii},×同构
  13. 整环一定是域
  14. 〈 F , ⊕ , ⊗ 〉 〈F, \oplus , \otimes〉 F,,是域, 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,, 〈 F , ⊕ , ⊗ 〉 〈F, \oplus , \otimes〉 F,,的子环,则 〈 R , ⊕ , ⊗ 〉 〈R, \oplus ,\otimes〉 R,,是整环

解答题
2,(10%)设a是10阶群的生成元,则 a 3 , a 4 a^3,a^4 a3,a4是几阶元素?

3,(20%)设 〈 G , ∗ 〉 〈G,\ast〉 G,是交换群,e是 ∗ \ast 的幺元, 〈 S , ∗ 〉 〈S,\ast〉 S, 〈 G , ∗ 〉 〈G,\ast〉 G,的子群,定义G上的二元关系R如下:
∀ x , y ∈ G , ( x , y ) ∈ R    ⟺    ( ∃ a ∈ S ) ( x ∗ a = a − 1 ∗ y ) \forall x,y\in G,(x,y)\in R \iff (\exists a\in S)(x\ast a=a^{-1}\ast y) x,yG,(x,y)R(aS)(xa=a1y)
(1)证明:R是G上的等价关系
(2)设 〈 G , ∗ 〉 = ( N 6 , + 6 ) , S = ( [ 0 ] 6 , [ 3 ] 6 ) 〈G,\ast〉=(N_6,+_6),S=([0]_6,[3]_6) G,=(N6,+6),S=([0]6,[3]6),求出所有等价类

4,(20%)已知 〈 S 1 , ⊕ , ⊗ 〉 〈S_1, \oplus , \otimes〉 S1,, 〈 S 2 , ⊕ , ⊗ 〉 〈S_2, \oplus , \otimes〉 S2,,是环 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,的两个子环
(1) 〈 S 1 ∩ S 2 , ⊕ , ⊗ 〉 〈S_1\cap S_2, \oplus , \otimes〉 S1S2,, 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,的子环吗,给出理由
(2)如果 〈 S 1 , ⊕ , ⊗ 〉 〈S_1, \oplus , \otimes〉 S1,, 〈 S 2 , ⊕ , ⊗ 〉 〈S_2, \oplus , \otimes〉 S2,,都是无零因子环,那么 〈 S 1 ∪ S 2 , ⊕ , ⊗ 〉 〈S_1\cup S_2, \oplus , \otimes〉 S1S2,,一定是无零因子环吗,给出理由

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值