环与域简介

环的基本概念

环的定义

设〈 R , ⊕ , ⊗ 〉是代数系统, ⊕ 和 ⊗ 是 R 上的两个二元运算,若 设〈R, \oplus , \otimes〉是代数系统, \oplus 和\otimes 是R上的两个二元运算,若 设〈R,,〉是代数系统,R上的两个二元运算,若
1. 〈 R , ⊕ 〉 〈R, \oplus〉 R,是交换群
2. 〈 R , ⊗ 〉 〈R, \otimes〉 R,是半群
3. ⊗ 对 ⊕ \otimes 对 \oplus 满足分配率,即对 ∀ a , b , c ∈ R \forall a,b,c \in R a,b,cR都有
a ⊗ ( b ⊕ c ) = ( a ⊗ b ) ⊕ ( a ⊗ c ) a\otimes (b\oplus c)=(a\otimes b)\oplus (a\otimes c) a(bc)=(ab)(ac)
( b ⊕ c ) ⊗ a = ( b ⊗ a ) ⊕ ( c ⊗ a ) (b\oplus c)\otimes a =(b\otimes a)\oplus (c\otimes a) (bc)a=(ba)(ca)
则称 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是环

  • 环中, 〈 R , ⊕ 〉 〈R, \oplus〉 R,是群,故关于 ⊕ \oplus 有幺元存在,将关于 ⊕ \oplus 的么元记为0,称为环的零元。
  • 环中, 〈 R , ⊕ 〉 〈R, \oplus〉 R,是群,故R中每个元素有逆元,设 a ∈ R a \in R aR,将a关于 ⊕ \oplus 的逆元记为-a ,称为a 的负元,且将 a ⊕ ( − b ) a \oplus (-b) a(b)简记为 a-b。
  • 环中,对于 ⊗ \otimes 运算,若有幺元,则记为1或e 。
  • 环中,设 a ∈ R a\in R aR,若a关于 ⊗ \otimes 有逆元,则记为 a − 1 a^{-1} a1
  • 以后谈到环,只讨论 ∣ R ∣ ⩾ 2 |R|\geqslant 2 R2的情况,即不讨论一个元素的环。
  • 环的定义中,不要求 ⊕ \oplus ⊗ \otimes 满足分配律,只要求 ⊗ \otimes ⊕ \oplus 满足分配律。

交换环 含幺环 交换含幺环

〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是环。

  1. ⊗ \otimes 运算满足交换律,则 称 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是交换环。
  2. 若关于 ⊗ \otimes 运算有幺元,则 称 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是含幺环。
  3. ⊗ \otimes 运算满足交换律又关于 ⊗ \otimes 运算有幺元,则 称 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是交换含幺环。

环的基本性质

〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是环,则 ∀ a , b , c ∈ R \forall a,b,c \in R a,b,cR,有:
1. 0 ⊗ a = a ⊗ 0 = 0 0\otimes a=a\otimes 0=0 0a=a0=0
2. a ⊗ ( − b ) = ( − a ) ⊗ b = − ( a ⊗ b ) a\otimes (-b)=(-a)\otimes b=-(a\otimes b) a(b)=(a)b=(ab)
3. ( − a ) ⊗ ( − b ) = a ⊗ b (-a)\otimes (-b) =a\otimes b (a)(b)=ab
4. ( − 1 ) ⊗ a = − a (-1)\otimes a=-a (1)a=a
5. ( − 1 ) ⊗ ( − 1 ) = 1 (-1)\otimes (-1)=1 (1)(1)=1
6. 左分配律: a ⊗ ( b − c ) = ( a ⊗ b ) − ( a ⊗ c ) a\otimes(b-c)=(a\otimes b)-(a\otimes c) a(bc)=(ab)(ac)
右分配率: ( b − c ) ⊗ a = ( b ⊗ a ) − ( c ⊗ a ) (b-c)\otimes a=(b\otimes a)-(c\otimes a) (bc)a=(ba)(ca)

无零因子环和含零因子环

〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是环。
1. ( ∃ a ∈ R ) ( ∃ b ∈ R ) ( a ≠ 0 ∧ b ≠ 0 ∧ a ⊗ b = 0 ) (\exists a \in R )(\exists b \in R)(a\ne 0 \land b \ne 0 \land a\otimes b =0) (aR)(bR)(a=0b=0ab=0),则称设 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是含零因子环,称a是环中的左零因子,称b是环中的右零因子。
2. ( ∀ a ∈ R ) ( ∀ b ∈ R ) ( a ≠ 0 ∧ b ≠ 0 ∧ a ⊗ b ≠ 0 ) (\forall a \in R )(\forall b \in R)(a\ne 0 \land b \ne 0 \land a\otimes b \ne 0) (aR)(bR)(a=0b=0ab=0),即环中无零因子(no nil-factor) ,则称环 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是无零因子环。

整环与除环

整环(integral domain)

交换含幺的无零因子环称为整环。

  • 整环又称为整区。

除环(division ring)

每个非零元都有(乘法)逆元的含幺环称为除环。即,若含幺环 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,满足:
( ∀ a ∈ R ) ( a ≠ 0    ⟹    a − 1 ∈ R ) (\forall a \in R)(a \ne 0 \implies a^{-1} \in R) (aR)(a=0a1R)
则称其为除环。

无零因子等同于消去律

在环 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,,无零因子    ⟺    \iff 消去律,即 ∀ a , b , c ∈ R 且 a ≠ 0 \forall a,b,c \in R 且 a\ne 0 a,b,cRa=0,都有
a ⊗ b = a ⊗ c    ⟹    b = c a\otimes b =a\otimes c \implies b=c ab=acb=c
b ⊗ a = c ⊗ b    ⟹    b = c b \otimes a=c\otimes b \implies b=c ba=cbb=c

除环是含幺的无零因子环。

因此,除环未必是整环,整环也未必是除环;
除环要成为整环,差乘法交换律;整环要成为除环,差(非零元)有乘法逆元 ;

在有限含幺环中,无零因子等同于(非零元)有逆元。

当R 有限时,有逆元,无零因子,消去律是相互等价的
当R 无限时,有逆元能推出消去律和无零因子,同时无零因子和消去律是等价的。

域(field)

设〈 F , ⊕ , ⊗ 〉是代数系统, ⊕ 和 ⊗ 是 R 上的两个二元运算,若 设〈F, \oplus , \otimes〉是代数系统, \oplus 和\otimes 是R上的两个二元运算,若 设〈F,,〉是代数系统,R上的两个二元运算,若
1. 〈 F , ⊕ 〉 〈F, \oplus〉 F,是交换群
2. 〈 F ∣ { 0 } , × 〉 〈F|\{0\}, \times〉 F{0},×是交换群
3. ⊗ 对 ⊕ \otimes 对 \oplus 满足分配率,即对 ∀ a , b , c ∈ F \forall a,b,c \in F a,b,cF都有
a ⊗ ( b ⊕ c ) = ( a ⊗ b ) ⊕ ( a ⊗ c ) a\otimes (b\oplus c)=(a\otimes b)\oplus (a\otimes c) a(bc)=(ab)(ac)

则称 〈 F , ⊕ , ⊗ 〉 〈F, \oplus , \otimes〉 F,,是域

定理1.可交换的除环是域

除环是每个非零元都有(乘法)逆元的含幺环,它与域概念仅差(乘
法)交换律。现在正好补齐,所以,可交换的除环是域。

定理2.有限整环是域

整环是交换含幺的无零因子环,它与域概念仅差每个非零元都有(乘法)逆元。但在有限环的情况下,上节定理4已经证明:
无零因子    ⟺    \iff 每个非零元都有(乘法)逆元
因此,有限整环是域。

性质总结

( I , + , × ) (I,+,\times) (I,+,×) ( M n × n , + , × ) (M_{n \times n},+,\times) (Mn×n,+,×) ( N m , + m , × m ) (N_m,+_m,\times_m) (Nm,+m,×m) ( 2 X , ⊕ , ∩ ) (2^X,\oplus ,\cap ) (2X,,) ( P [ x ] , + , × ) (P[x],+,\times) (P[x],+,×) ( Z m [ x ] , + m , × m ) (Z_m[x],+_m,\times_m) (Zm[x],+m,×m) ( Z p [ x : n ] , + f , × f ) (Z_p[x:n],+_f,\times_f) (Zp[x:n],+f,×f)
运算 × \times × × \times × × m \times_m ×m ∩ \cap × \times × × m \times_m ×m × f \times_f ×f
交换律
幺元1E [ 1 ] m [1]_m [1]mX111
零因子m是素数:无
m是合数:有
m是素数:无
m是合数:有
f是素多项式:无
f非素多项式:有
整环不是m是素数:是
m是合数:不是
不是m是素数:是
m是合数:不是
f是素多项式:是
f非素多项式:不是
除环不是不是m是素数:是
m是合数:不是
不是不是m是素数:不是
m是合数:不是
f是素多项式:是
f非素多项式:不是
不是不是m是素数:是
m是合数:不是
不是不是m是素数:不是
m是合数:不是
f是素多项式:是
f非素多项式:不是
  • 6
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
作者: 韩茂安 出版社: 科学出版社 出版年: 2013-1 页数: 348 定价: 108.00元 ISBN: 9787030361400 内容简介 · · · · · · 作者十多年来一直坚持极限的专题研究,在Hopf分支、同宿分支等多个方面建立了很有特色的研究方法,既有一般理论和方法,又有对多项式系统等众多应用。本书意在将作者及其合作者在极限方面的研究成果进行系统总结,主要内容包括极限的Hopf分支、同宿分支、异宿分支、含有幂零奇点的极限分支、多项式系统极限个数下界等。除了一些基本知识以外,本书大部分内容是介绍与作者相关的成果。本书是一本学术专著,其研究课题连续不断地得到了国家自然科学基金的资助。作者在2002年曾出版《动力系统的周期解与分支理论》,其重点是高维系统的周期解。本书是专门论述二维系统的极限分支。本书的创新点是深入研究了Melnikov函数的展开式,获得了若干展开式系数的计算公式,并应用到一系列多项式系统,获得极限个数的新结果。本书内容前沿,自成一体。虽是专著,但又可以作为研究生教学用书,更可以作为同行科研用书。本书共有5章,第一章利用Poincar?e映射建立极限的基本性质,如重数与稳定性在变换下的不变性及非双曲极限在扰动下几较简单的分支现象。第二章的主题是Hopf分支.首先引入焦点附近的Poincar?e映射,焦点稳定性、阶数及焦点量,之后给出研究焦点性质的三种方法,并给出这些方法之间的关系。特别深入研究了若干多项式系统的Hopf分支。利用Melnikov函数展开式的系数研究了初等中心在扰动下的退化Hopf分支问题。还引入了平面Zq等变系统等概念,并进行了分研究。第三章给出近Hamiltonian系统的分支理论.首先引入了中心、闭轨以及同宿性数概念,之后建立寻求这些性数的一般方法,对含幂零奇点的Hamiltonian系统的扰动分支进行了深入研究,包括幂零中心的扰动分支、尖点的扰动分支、含幂零鞍点的同宿的扰动分支等,主要思路是研究Melnikov函数的展开式,并建立展开式中若干系数的计算公式。第四章专门研究同宿轨与两点异宿的扰动分支,与上一章不同的是,本章是通过同宿改变稳定性来获得极限。为此,我们先要建立同宿稳定性的判别量,然后较系统地研究同宿、双同宿与两点异宿在扰动下产生极限的个数问题。最后一章,即第五章,论述分支理论方法对平面一般多项式系统的一个有趣应用,基于某些3,4,5和6次多项式极限的个数估计,获得了6次以上任意多项式极限最多个数的下界(这些结果都是目前最好的下界估计)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值