环与域简介

环的基本概念

环的定义

设〈 R , ⊕ , ⊗ 〉是代数系统, ⊕ 和 ⊗ 是 R 上的两个二元运算,若 设〈R, \oplus , \otimes〉是代数系统, \oplus 和\otimes 是R上的两个二元运算,若 设〈R,,〉是代数系统,R上的两个二元运算,若
1. 〈 R , ⊕ 〉 〈R, \oplus〉 R,是交换群
2. 〈 R , ⊗ 〉 〈R, \otimes〉 R,是半群
3. ⊗ 对 ⊕ \otimes 对 \oplus 满足分配率,即对 ∀ a , b , c ∈ R \forall a,b,c \in R a,b,cR都有
a ⊗ ( b ⊕ c ) = ( a ⊗ b ) ⊕ ( a ⊗ c ) a\otimes (b\oplus c)=(a\otimes b)\oplus (a\otimes c) a(bc)=(ab)(ac)
( b ⊕ c ) ⊗ a = ( b ⊗ a ) ⊕ ( c ⊗ a ) (b\oplus c)\otimes a =(b\otimes a)\oplus (c\otimes a) (bc)a=(ba)(ca)
则称 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是环

  • 环中, 〈 R , ⊕ 〉 〈R, \oplus〉 R,是群,故关于 ⊕ \oplus 有幺元存在,将关于 ⊕ \oplus 的么元记为0,称为环的零元。
  • 环中, 〈 R , ⊕ 〉 〈R, \oplus〉 R,是群,故R中每个元素有逆元,设 a ∈ R a \in R aR,将a关于 ⊕ \oplus 的逆元记为-a ,称为a 的负元,且将 a ⊕ ( − b ) a \oplus (-b) a(b)简记为 a-b。
  • 环中,对于 ⊗ \otimes 运算,若有幺元,则记为1或e 。
  • 环中,设 a ∈ R a\in R aR,若a关于 ⊗ \otimes 有逆元,则记为 a − 1 a^{-1} a1
  • 以后谈到环,只讨论 ∣ R ∣ ⩾ 2 |R|\geqslant 2 R2的情况,即不讨论一个元素的环。
  • 环的定义中,不要求 ⊕ \oplus ⊗ \otimes 满足分配律,只要求 ⊗ \otimes ⊕ \oplus 满足分配律。

交换环 含幺环 交换含幺环

〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是环。

  1. ⊗ \otimes 运算满足交换律,则 称 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是交换环。
  2. 若关于 ⊗ \otimes 运算有幺元,则 称 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是含幺环。
  3. ⊗ \otimes 运算满足交换律又关于 ⊗ \otimes 运算有幺元,则 称 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是交换含幺环。

环的基本性质

〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是环,则 ∀ a , b , c ∈ R \forall a,b,c \in R a,b,cR,有:
1. 0 ⊗ a = a ⊗ 0 = 0 0\otimes a=a\otimes 0=0 0a=a0=0
2. a ⊗ ( − b ) = ( − a ) ⊗ b = − ( a ⊗ b ) a\otimes (-b)=(-a)\otimes b=-(a\otimes b) a(b)=(a)b=(ab)
3. ( − a ) ⊗ ( − b ) = a ⊗ b (-a)\otimes (-b) =a\otimes b (a)(b)=ab
4. ( − 1 ) ⊗ a = − a (-1)\otimes a=-a (1)a=a
5. ( − 1 ) ⊗ ( − 1 ) = 1 (-1)\otimes (-1)=1 (1)(1)=1
6. 左分配律: a ⊗ ( b − c ) = ( a ⊗ b ) − ( a ⊗ c ) a\otimes(b-c)=(a\otimes b)-(a\otimes c) a(bc)=(ab)(ac)
右分配率: ( b − c ) ⊗ a = ( b ⊗ a ) − ( c ⊗ a ) (b-c)\otimes a=(b\otimes a)-(c\otimes a) (bc)a=(ba)(ca)

无零因子环和含零因子环

〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是环。
1. ( ∃ a ∈ R ) ( ∃ b ∈ R ) ( a ≠ 0 ∧ b ≠ 0 ∧ a ⊗ b = 0 ) (\exists a \in R )(\exists b \in R)(a\ne 0 \land b \ne 0 \land a\otimes b =0) (aR)(bR)(a=0b=0ab=0),则称设 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是含零因子环,称a是环中的左零因子,称b是环中的右零因子。
2. ( ∀ a ∈ R ) ( ∀ b ∈ R ) ( a ≠ 0 ∧ b ≠ 0 ∧ a ⊗ b ≠ 0 ) (\forall a \in R )(\forall b \in R)(a\ne 0 \land b \ne 0 \land a\otimes b \ne 0) (aR)(bR)(a=0b=0ab=0),即环中无零因子(no nil-factor) ,则称环 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,是无零因子环。

整环与除环

整环(integral domain)

交换含幺的无零因子环称为整环。

  • 整环又称为整区。

除环(division ring)

每个非零元都有(乘法)逆元的含幺环称为除环。即,若含幺环 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,满足:
( ∀ a ∈ R ) ( a ≠ 0    ⟹    a − 1 ∈ R ) (\forall a \in R)(a \ne 0 \implies a^{-1} \in R) (aR)(a=0a1R)
则称其为除环。

无零因子等同于消去律

在环 〈 R , ⊕ , ⊗ 〉 〈R, \oplus , \otimes〉 R,,,无零因子    ⟺    \iff 消去律,即 ∀ a , b , c ∈ R 且 a ≠ 0 \forall a,b,c \in R 且 a\ne 0 a,b,cRa=0,都有
a ⊗ b = a ⊗ c    ⟹    b = c a\otimes b =a\otimes c \implies b=c ab=acb=c
b ⊗ a = c ⊗ b    ⟹    b = c b \otimes a=c\otimes b \implies b=c ba=cbb=c

除环是含幺的无零因子环。

因此,除环未必是整环,整环也未必是除环;
除环要成为整环,差乘法交换律;整环要成为除环,差(非零元)有乘法逆元 ;

在有限含幺环中,无零因子等同于(非零元)有逆元。

当R 有限时,有逆元,无零因子,消去律是相互等价的
当R 无限时,有逆元能推出消去律和无零因子,同时无零因子和消去律是等价的。

域(field)

设〈 F , ⊕ , ⊗ 〉是代数系统, ⊕ 和 ⊗ 是 R 上的两个二元运算,若 设〈F, \oplus , \otimes〉是代数系统, \oplus 和\otimes 是R上的两个二元运算,若 设〈F,,〉是代数系统,R上的两个二元运算,若
1. 〈 F , ⊕ 〉 〈F, \oplus〉 F,是交换群
2. 〈 F ∣ { 0 } , × 〉 〈F|\{0\}, \times〉 F{0},×是交换群
3. ⊗ 对 ⊕ \otimes 对 \oplus 满足分配率,即对 ∀ a , b , c ∈ F \forall a,b,c \in F a,b,cF都有
a ⊗ ( b ⊕ c ) = ( a ⊗ b ) ⊕ ( a ⊗ c ) a\otimes (b\oplus c)=(a\otimes b)\oplus (a\otimes c) a(bc)=(ab)(ac)

则称 〈 F , ⊕ , ⊗ 〉 〈F, \oplus , \otimes〉 F,,是域

定理1.可交换的除环是域

除环是每个非零元都有(乘法)逆元的含幺环,它与域概念仅差(乘
法)交换律。现在正好补齐,所以,可交换的除环是域。

定理2.有限整环是域

整环是交换含幺的无零因子环,它与域概念仅差每个非零元都有(乘法)逆元。但在有限环的情况下,上节定理4已经证明:
无零因子    ⟺    \iff 每个非零元都有(乘法)逆元
因此,有限整环是域。

性质总结

( I , + , × ) (I,+,\times) (I,+,×) ( M n × n , + , × ) (M_{n \times n},+,\times) (Mn×n,+,×) ( N m , + m , × m ) (N_m,+_m,\times_m) (Nm,+m,×m) ( 2 X , ⊕ , ∩ ) (2^X,\oplus ,\cap ) (2X,,) ( P [ x ] , + , × ) (P[x],+,\times) (P[x],+,×) ( Z m [ x ] , + m , × m ) (Z_m[x],+_m,\times_m) (Zm[x],+m,×m) ( Z p [ x : n ] , + f , × f ) (Z_p[x:n],+_f,\times_f) (Zp[x:n],+f,×f)
运算 × \times × × \times × × m \times_m ×m ∩ \cap × \times × × m \times_m ×m × f \times_f ×f
交换律
幺元1E [ 1 ] m [1]_m [1]mX111
零因子m是素数:无
m是合数:有
m是素数:无
m是合数:有
f是素多项式:无
f非素多项式:有
整环不是m是素数:是
m是合数:不是
不是m是素数:是
m是合数:不是
f是素多项式:是
f非素多项式:不是
除环不是不是m是素数:是
m是合数:不是
不是不是m是素数:不是
m是合数:不是
f是素多项式:是
f非素多项式:不是
不是不是m是素数:是
m是合数:不是
不是不是m是素数:不是
m是合数:不是
f是素多项式:是
f非素多项式:不是
  • 6
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值