路与圈简介

路与圈

途径(way)

在图 G = ( V , E , γ ) G=(V,E,\gamma) G=(V,E,γ)中,G的有限非空点边交错序列
w = v 0 , e 1 , v 1 , e 2 , v 2 , … , e k , v k w=v_0,e_1,v_1,e_2,v_2,\dots,e_k,v_k w=v0,e1,v1,e2,v2,,ek,vk,若满足以下条件:
1. γ ( e i ) = { v i − 1 , v i } \gamma(e_i)=\{v_{i-1},v_i\} γ(ei)={vi1,vi}(或 ( v i − 1 , v i ) ( 1 ≤ i ≤ k ) (v_{i-1},v_i)(1\leq i \leq k) (vi1,vi)(1ik)
2. 当 e i e_i ei e i + 1 e_{i+1} ei+1不是自环时,有 e i + 1 ≠ e i ( 1 ≤ i ≤ n ) e_{i+1}\neq e_i(1\leq i \leq n) ei+1=ei(1in)(对于无向图)。

则称其为G的一条从 v 0 v_0 v0 w w w的途径, v 0 v_0 v0称为途径 w w w的起点, v k v_k vk称为途径 w w w的终点,而 k k k称为途径的长度。

路(path)、圈(cycle)

G = ( V , E , ) G=(V,E,) G=(V,E,)是一图, w = ( v 0 , e 1 , v 1 , e 2 , v 2 , … , e k , v k ) w=(v_0,e_1,v_1,e_2,v_2,\dots,e_k,v_k) w=v0,e1,v1,e2,v2,,ek,vk是一途径。

  1. v 0 ≠ v k v_0\ne v_k v0=vk,则称此途径w是从v0到vk的一条路;记为
    P = ( v 0 , e 1 , v 1 , e 2 , v 2 , … , e k , v k ) P=(v_0,e_1,v_1,e_2,v_2,\dots,e_k,v_k) P=v0,e1,v1,e2,v2,,ek,vk,并称k为路P的长度(即|P|=k)。
  2. v 0 = v k v_0= v_k v0=vk,则称此途径w是一个圈;记为
    C = ( v 0 , e 1 , v 1 , e 2 , v 2 , … , e k , v k ) C=(v_0,e_1,v_1,e_2,v_2,\dots,e_k,v_k) C=v0,e1,v1,e2,v2,,ek,vk,并称k为圈C的长度(即|C|=k)。

可达性(reachablility)、连通性(connectivity)

G = ( V , E , ) G=(V,E,) G=(V,E,)是一无向图, u , v ∈ V u,v\in V u,vV

  1. 若存在着从结点u到结点v的一条路P,则称从结点u到结点v是可达的;
  2. 若图G中任何两结点都是可达的,则称此图G是连通的。否则,称图G是非连通的
  • 可达概念可以看作结点间的一个二元关系——可达关系;
  • 在无向图中,规定任一结点自己到自己总是可达的,即可达关系具有自反性;
  • 在无向图中,可达性是相互的,从结点u可达结点v,则从结点v也可达结点u ,即可达关系是对称的;
  • 可达关系是传递的,即若从结点u可达结点v,又从结点v可达结点w,则从结点u也可达结点w;
  • 一般地,当从结点u可达结点v时,它们之间不一定只有一条路,可能会有若干条路。 称从结点u到结点v的所有路中长度最短的那一条为短程线,并将短程线的长度叫做从结点u到结点v的距离,用d(u, v)表示。

规定:
1. d ( u , u ) = 0 d(u, u)=0 d(u,u)=0
2. 若结点u到结点v不可达,则 d ( u , v ) = ∞ d(u, v)=\infty d(u,v)=

  • 短程线不一定是唯一的,有时可能会有好几条;
  • 按照通常的理解,距离概念一般都具有下列性质:
  1. 非负性: d ( u , v ) ≥ 0 d(u, v)\geq0 d(u,v)0
  2. 对称性; d ( u , v ) = d ( v , u ) d(u, v)= d(v, u) d(u,v)=d(v,u)
  3. 三角不等式: d ( u , v ) + d ( v , w ) ≥ d ( u , w ) d(u, v)+ d(v, w) \geq d(u, w) d(u,v)+d(v,w)d(u,w)\
  • 对无向图,上述性质全成立;
  • 对有向图来说,第二条,对称性质不成立。

连通性是有强弱之分的;
(1)若图G中任二结点间都至少存在着一条路可达,则称图G是1-连通的;
(2)若图G中任二结点间都至少存在着k条不同的路可达,则称图G是k-连通的 ( k ≥ 2 ) (k\geq2) (k2)

  • 通常所说的连通性实际上是指1-连通。 1-连通的连通性较差,重要的信道图网络,比如军事信道图网络,其连通性至少在2-连通以上。

简单路(simple path)简单圈(simple cycle)

无重复边的路称为简单路;
无重复边的圈称为简单圈。

初级路(elementary path)初级圈(elementary cycle)

无重复点的路称为初级路;
无重复点的圈称为初级圈

定理1

设G=(V,E)为一简单图,若|V|= n ,则

  1. G中任一初级路的长度均不超过n-1;
  2. G中任一初级圈的长度均不超过n。

连通支(分图(connected component))

无向图中极大的连通子图称为一个连通支。

强连通 单向连通 弱连通设

G = ( V , E , ) G=(V,E,) G=(V,E,)是一有向图。如果G中

  1. 任意两结点间都是相互可达的,则称图G是强连通的( strongly connected);
  2. 任意两结点间至少有一结点可达另一结点,则称图G是单向连通的(single directed connected);
  3. 略去边的方向后,任意两结点间都是可达的(即图G的无向图是连通的),则称图G是弱连通的(weakly connected)。

•强连通    ⟹    \implies 单向连通;反之?单向连通    ⟹    \implies 弱连通;反之?

强分图 单向分图 弱分图

G = ( V , E , ) G=(V,E,) G=(V,E,)是一简单有向图。

  1. 称 G 的 极 大 的 强 连 通 子 图 为 G 的 强 连 通 支 ( 强分图 ( strongly fragments));
  2. 称G的极大的单向连通子图为G的一个单向连通支(单向分图(single directed fragments));
  3. 称G的一个极大的弱连通子图为G的一个弱连通支(弱分图(weakly fragments))。
  • 有向图中的强连通性建立了图G的结点集V上的一个等价关系,因而诱导出了图G的结点集V上的一个划分,图G的每一个强连通支就是一个“划分块”;但是却不能在图G的边集E上建立一个划分;
  • 有向图中的弱连通性在图G的结点集V上以及边集E上都建立了一个等价关系,因而在图G的结点集V上以及边集E上都诱导出了一个划分,图G的每一个弱连通支就是一个“划分块”;
  • 有向图中的单向连通性,由于单向可达关系不具有对称性,所以这种关系并不能在图G的结点集V上及边集E上建立一个等价关系,因而也不能在图G的结点集V上及边集E上诱导出一个划分,图G的每一个单向连通支也就不会是(由某种等价关系所确定的)一个“划分块。

定理2

  1. 每一个结点及每一条边都恰在一弱连通支中;
  2. 每一个结点都恰在一个强连通支中;
  3. 每一个结点、每一条边都至少属于一个单向连通支。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值