题解:最优硬币组合问题

更多算法题的题解见:算法刷题题解汇总(持续更新中)

一、问题背景

小C有多种不同面值的硬币,每种硬币的数量是无限的。他希望知道,如何使用最少数量的硬币,凑出给定的总金额N。小C对硬币的组合方式很感兴趣,但他更希望在满足总金额的同时,使用的硬币数量尽可能少。

例如:小C有三种硬币,面值分别为 1, 2, 5。他需要凑出总金额为 18。一种最优的方案是使用三个 5 面值的硬币,一个 2 面值的硬币和一个 1 面值的硬币,总共五个硬币。

二、问题分析

  1. 小C有多种不同面值的硬币,每种硬币的数量是无限的。
  2. 他需要凑出总金额为N的硬币组合。
  3. 我们的目标是使用最少数量的硬币,满足总金额的要求。

三、解题思路

  1. 初始化动态规划数组:创建一个动态规划数组dp,其中dp[i]表示凑出金额i时,最少需要的硬币数。
  2. 初始化coinUsed数组:创建一个数组coinUsed,用于记录每个金额是通过使用哪个硬币得到的。
  3. 遍历硬币数组:从大到小遍历硬币数组,优先考虑大面值硬币。
  4. 更新dp数组:对于每个硬币,如果它小于或等于当前金额i,则尝试使用这个硬币,并更新dp数组和coinUsed数组。
  5. 回溯求解:通过coinUsed数组回溯,找到硬币组合。

参考代码如下:

public class Main {
    public static List<Integer> solution(int[] coins, int total) {
        int[] dp = new int[total + 1];
        int[] coinUsed = new int[total + 1];
        for (int i = 1; i <= total; i++) {
            dp[i] = total + 1;
        }
        Arrays.sort(coins);
        for (int i = 1; i <= total; i++) {
            for (int j = coins.length - 1; j >= 0; j--) {
                int coin = coins[j];
                if (coin <= i) {
                    if (dp[i - coin] + 1 < dp[i]) {
                        dp[i] = dp[i - coin] + 1;
                        coinUsed[i] = coin; 
                    }
                }
            }
        }
        // 无法组成该金额
        if (dp[total] == total + 1) {
            return new ArrayList<>();
        }
        // 回溯找到硬币组合
        List<Integer> result = new ArrayList<>();
        int remaining = total;
        while (remaining > 0) {
            int coin = coinUsed[remaining];
            result.add(coin);
            remaining -= coin;
        }
        return result;
    }
}

关键步骤解析

  1. 动态规划数组dp:dp数组用于记录每个金额最少需要的硬币数。初始化时,除了dp[0]外,其它都设置为最大值,因为0不需要任何硬币。
  2. coinUsed数组:coinUsed数组用于记录每个金额是通过使用哪个硬币得到的。通过这个数组,我们可以回溯出硬币组合。
  3. 硬币数组排序:在遍历硬币数组时,我们首先对硬币数组进行从大到小的排序,这样我们可以优先考虑大面值的硬币,从而减少硬币的数量。
  4. 更新dp数组:在遍历硬币数组时,我们尝试使用每个硬币,并更新dp数组和coinUsed数组。如果使用当前硬币后,所需硬币数更少,则更新dp数组和coinUsed数组。
  5. 回溯求解:通过coinUsed数组回溯,找到硬币组合。从总金额开始,逐个减去硬币面值,直到金额为0,将硬币面值添加到结果列表中。

算法优势

  1. 动态规划:通过动态规划,我们可以找到最优解,使得硬币的数量尽可能少。
  2. 排序:对硬币数组进行排序,优先考虑大面值硬币,可以减少硬币的数量。
  3. 回溯:通过回溯,我们可以找到硬币组合。

复杂度分析

时间复杂度分析:

  1. 初始化动态规划数组和硬币使用数组的时间复杂度为 O(total + 1),因为需要创建一个长度为 total + 1 的数组。
  2. 对硬币数组进行排序的时间复杂度为 O(coins.length * log(coins.length)),其中 coins.length 是硬币数组的长度。
  3. 遍历硬币数组和总金额的时间复杂度为 O(total * coins.length),因为对于每个金额 i,我们需要遍历所有硬币。
  4. 更新动态规划数组和硬币使用数组的时间复杂度为 O(1),因为每个操作的时间复杂度为常数。
  5. 通过硬币使用数组回溯找到硬币组合的时间复杂度为 O(total),因为需要遍历总金额。

因此,整个算法的时间复杂度: O ( t o t a l ∗ c o i n s . l e n g t h + c o i n s . l e n g t h ∗ l o g ( c o i n s . l e n g t h ) ) O(total * coins.length + coins.length * log(coins.length)) O(totalcoins.length+coins.lengthlog(coins.length)) 通常情况下,如果total远大于coins.length,则可以简化为O(total * coins.length)

空间复杂度分析:

  1. 动态规划数组和硬币使用数组的空间复杂度为 O(total + 1),因为需要创建一个长度为 tal + 1数组。
  2. 结果列表的空间复杂度为 O(total),因为需要存储每个金额是通过使用哪个硬币得到的。
  3. 其他变量的空间复杂度为 O(1)

因此,空间复杂度:O(total),呈线性关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值