反向传播把

本文介绍了如何使用PyTorch库进行基础的神经网络训练,包括定义前向传播、损失函数、梯度计算以及权重更新的过程。作者通过实例展示了如何在每个训练迭代中计算梯度并更新权重,以实现模型的优化。
摘要由CSDN通过智能技术生成
import torch
x_data=[1,2,3]
y_data=[]
y_data=[i*2 for i in x]

w是需要计算梯度的

w = torch.tensor([1.0])

w.requires_grad = True
def forward(x):
    return x * w


def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2
print("predict (before training)", 4, forward(4).item())
for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)
        # loss是算出来的张量
        l.backward()
        # print(l.backward()) none
        
        
        # 反馈,计算谁需要梯度,比如之前设置为True的变量
        # 将梯度存到w中
        # 每进行一次反向传播释放计算图
        
        
        # w.grad是一个tensor,如果直接计算仅构建计算图
        
        print('w',w)
        print('\t')
        print('\tgrad:', x, y, w.grad.item()) # 梯度中数值拿出来变成py中的标量+
        print('\tgrad顶顶顶:', x, y, w.grad.data)
        
        # sum+=l.item()
        # 计算平均的时候
        
        w.data = w.data - 0.01 * w.grad.data
        
        
        w.grad.data.zero_()
        # 权重梯度数据清零,此时倒数,梯度不会累加
        
        
    print("Progress:", epoch, l.item())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值