17---没有标签的训练

该博客探讨了如何利用零样本分类器为小型模型创建训练数据,以解决无标签文本的问题。通过使用大型语言模型进行相似性比较,生成虚拟标签。文章展示了如何用这种方法处理 SST2 数据集,训练 Electra 模型,并评估了模型的准确性。
摘要由CSDN通过智能技术生成

几乎所有可用的数据都没有标记。标记数据需要人工审查和/或需要时间来收集。零样本分类采用现有的大型语言模型,并在候选文本和标签列表之间进行相似性比较。这已被证明表现出奇的好。

零样本分类器的问题在于它们需要大量参数 (400M+) 才能很好地应对一般任务,这对硬件要求很高。

本文探索使用零样本分类器为较小的模型构建训练数据。一种简单的知识蒸馏形式。

安装依赖
安装txtai和所有依赖项。
pip install txtai datasets pandas
将零样本分类器应用于未标记的文本
以下部分采用 sst2 数据集的 1000 条记录随机样本,并将零样本分类器应用于文本。标签被忽略。选择此数据集只是为了能够评估最终的准确性。
import random

from datasets import load_dataset

from txtai.pipeline import Labels

def batch(texts, size):
return [texts[x : x + size] for x in range(0, len(texts), size)]

Set random seed for repeatable sampling

random.seed(42)

ds = load_dataset(“glue”, “sst2”)

sentences = random.sample(ds[“train”][“sentence”], 1000)

Load a zero shot classifier - txtai provides this

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q shen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值