在工程领域问题一般都是线性问题。
压缩感知兴起于逆问题理论。逆问题的任务是由已知的部分结果确定模型或者反求原因。关于线性模型的逆问题一般可转换为求解线性系统,其中欠定线性系统的求解最具有难度。压缩感知理论为欠定线性系统的求解提供了新思路。
一、什么是欠定线性系统?
众所周知,1个方程解1个未知数,2个方程解2个未知数,这是我们平时接触较多的求解线性系统的情况,大佬们称之为适定系统。
那如果,一个方程有两个未知数呢?这种情况就是欠定系统了。
在压缩感知理论中,一般用下列式子来表示一个欠定系统:
y
=
A
X
.
\ y = AX\,.
y=AX.
其中,
A
∈
R
M
×
N
.
X
∈
R
M
,
.
y
∈
R
N
.
\ \text{A} \in \mathbb{R}^{M \times N}\,.\ X\in\ \mathbb{R}^M\ ,.\ \text{y} \in {\mathbb{R}^{\text{N}}}\,.
A∈RM×N. X∈ RM ,. y∈RN.
当
M
<
N
\ M < N\,
M<N时,系统为欠定系统。
对于欠定线性系统来说,存在无穷多解,但在某些条件下能够从观测信号y中重构原始信号x,即获得唯一解。
二、稀疏性
定义:大多数信道系数的能量较小,而几个能量较大的抽头分布相隔较远。
y
=
A
X
\ y = AX\,
y=AX是一个欠定系统,它具有无穷多个解,利用x的稀疏性即可将欠定系统变为一个适定系统。
在上述欠定系统中,仅有
X
\ X \,
X有未知数,此是
X
\ X \,
X有N个未知数,但
Y
\ Y \,
Y有M个,且
M
<
N
\ M < N\,
M<N,即有M个方程组(约束条件)求解N个未知数,(排除无解的情况)结果必然是有无穷个解。
我们假设 X \ X\, X中有 s \ s\, s个非零的未知数,当然 0 < s < N \ 0<s<N\, 0<s<N,其余都为0,此是 X \ X\, X中真正的未知量应该是 X \ X\, X中 s \ s\, s个非零未知数的值以及这些非零未知数的位置,因此一共 2 s \ 2s\, 2s个未知数。当 X \ X\, X非常稀疏时,即 2 s ⩽ N , \ 2s \leqslant N, 2s⩽N,,我们再返回来看这个欠定系统, 2 s \ 2s\, 2s个未知数, N \ N\, N个方程,且 2 s ⩽ N , \ 2s \leqslant N, 2s⩽N,那么这个欠定系统是不是就变成了适定甚至是超定系统,因此就可以进行求解。但需要注意的是求解位置要比求解值难得多。
为了解决上述问题,大佬们用这样一个优化问题来表示:
(
P
J
)
:
min
J
(
x
)
s
.
t
.
y
=
A
X
\ ({P_J}):\min J(x) \\\ s.t. \ \ \ y = AX\
(PJ):minJ(x) s.t. y=AX
其中
J
(
x
)
\ J(x)
J(x)一般用范数表示。
根据拉格朗日乘子法可知优化问题有如下解:
x
=
A
T
(
A
A
T
)
−
1
y
\ x = {A^T}{(A{A^T})^{ - 1}}y\
x=AT(AAT)−1y
三、稀疏重构
(
P
J
)
:
min
J
(
x
)
=
∣
∣
x
∣
∣
p
s
.
t
.
y
=
A
X
\ ({P_J}):\min J(x)=||x||_p \\\ s.t. \ \ \ y = AX\
(PJ):minJ(x)=∣∣x∣∣p s.t. y=AX
上式即稀疏重构数学模型。
对于
ℓ
p
\ {\ell _p}\,
ℓp
∣
∣
x
∣
∣
p
=
∑
i
∣
x
i
∣
p
p
\ ||x||{}_p = \sqrt[p]{{{{\sum\nolimits_i {|{x_i}|} }^p}}}\
∣∣x∣∣p=p∑i∣xi∣p
范数能够描述向量的稀疏性,当
p
→
0
\ p \to 0
p→0时,
ℓ
p
\ {\ell _p}\,
ℓp的值约趋近于
X
\ X\,
X中非零元素的个数。但考虑
0
0
\ 0^0
00没有意义,因此一般把对于
ℓ
0
\ {\ell _0}\,
ℓ0的优化问题转变为对于
ℓ
1
\ {\ell _1}\,
ℓ1的优化问题。
考虑到在实际应用中会出现噪声干扰等情况,一般约束条件可表示为
∣
∣
y
−
A
X
∣
∣
p
⩽
ε
\ ||y-AX||_p\leqslant \varepsilon\
∣∣y−AX∣∣p⩽ε
四、可重构条件
若要信号可被重构,则测量矩阵需要满足RIP(约束等距性质)
对于测量矩阵
A
\ A
A满足:
(
1
−
δ
K
)
∣
∣
x
∣
∣
2
2
⩽
∣
∣
A
x
∣
∣
2
2
⩽
(
1
+
δ
K
)
∣
∣
x
∣
∣
2
2
\ (1 - {\delta _K})||x||_2^2 \leqslant ||Ax||_2^2 \leqslant (1 + {\delta _K})||x||_2^2\
(1−δK)∣∣x∣∣22⩽∣∣Ax∣∣22⩽(1+δK)∣∣x∣∣22 其中,
0
<
δ
K
<
1
\ 0< \delta _K <1
0<δK<1.
则认为系统满足可重构条件。
目前理论分析和实际应用中的测量矩阵分为随机矩阵、确定性矩阵和结构性矩阵三种。