压缩感知基础概念

在工程领域问题一般都是线性问题。
压缩感知兴起于逆问题理论。逆问题的任务是由已知的部分结果确定模型或者反求原因。关于线性模型的逆问题一般可转换为求解线性系统,其中欠定线性系统的求解最具有难度。压缩感知理论为欠定线性系统的求解提供了新思路。

一、什么是欠定线性系统?

众所周知,1个方程解1个未知数,2个方程解2个未知数,这是我们平时接触较多的求解线性系统的情况,大佬们称之为适定系统。
那如果,一个方程有两个未知数呢?这种情况就是欠定系统了。
在压缩感知理论中,一般用下列式子来表示一个欠定系统:
  y = A X   . \ y = AX\,.  y=AX.
其中,  A ∈ R M × N   .   X ∈   R M   , .  y ∈ R N   . \ \text{A} \in \mathbb{R}^{M \times N}\,.\ X\in\ \mathbb{R}^M\ ,.\ \text{y} \in {\mathbb{R}^{\text{N}}}\,.  ARM×N. X RM ,. yRN.
  M < N   \ M < N\,  M<N时,系统为欠定系统。
对于欠定线性系统来说,存在无穷多解,但在某些条件下能够从观测信号y中重构原始信号x,即获得唯一解。

二、稀疏性

定义:大多数信道系数的能量较小,而几个能量较大的抽头分布相隔较远。

  y = A X   \ y = AX\,  y=AX是一个欠定系统,它具有无穷多个解,利用x的稀疏性即可将欠定系统变为一个适定系统。
在上述欠定系统中,仅有   X   \ X \,  X有未知数,此是   X   \ X \,  X有N个未知数,但   Y   \ Y \,  Y有M个,且   M < N   \ M < N\,  M<N,即有M个方程组(约束条件)求解N个未知数,(排除无解的情况)结果必然是有无穷个解。

我们假设   X   \ X\,  X中有   s   \ s\,  s个非零的未知数,当然   0 < s < N   \ 0<s<N\,  0<s<N,其余都为0,此是   X   \ X\,  X中真正的未知量应该是   X   \ X\,  X   s   \ s\,  s个非零未知数的值以及这些非零未知数的位置,因此一共   2 s   \ 2s\,  2s个未知数。当   X   \ X\,  X非常稀疏时,即   2 s ⩽ N , \ 2s \leqslant N,  2sN,,我们再返回来看这个欠定系统,   2 s   \ 2s\,  2s个未知数,   N   \ N\,  N个方程,且   2 s ⩽ N , \ 2s \leqslant N,  2sN,那么这个欠定系统是不是就变成了适定甚至是超定系统,因此就可以进行求解。但需要注意的是求解位置要比求解值难得多。

为了解决上述问题,大佬们用这样一个优化问题来表示:
  ( P J ) : min ⁡ J ( x )   s . t .     y = A X   \ ({P_J}):\min J(x) \\\ s.t. \ \ \ y = AX\  (PJ):minJ(x) s.t.   y=AX 
其中   J ( x ) \ J(x)  J(x)一般用范数表示。
根据拉格朗日乘子法可知优化问题有如下解:
  x = A T ( A A T ) − 1 y   \ x = {A^T}{(A{A^T})^{ - 1}}y\  x=AT(AAT)1y 

三、稀疏重构

  ( P J ) : min ⁡ J ( x ) = ∣ ∣ x ∣ ∣ p   s . t .     y = A X   \ ({P_J}):\min J(x)=||x||_p \\\ s.t. \ \ \ y = AX\  (PJ):minJ(x)=∣∣xp s.t.   y=AX 
上式即稀疏重构数学模型。

对于   ℓ p   \ {\ell _p}\,  p
  ∣ ∣ x ∣ ∣ p = ∑ i ∣ x i ∣ p p   \ ||x||{}_p = \sqrt[p]{{{{\sum\nolimits_i {|{x_i}|} }^p}}}\  ∣∣x∣∣p=pixip  
范数能够描述向量的稀疏性,当   p → 0 \ p \to 0  p0时,   ℓ p   \ {\ell _p}\,  p的值约趋近于   X   \ X\,  X中非零元素的个数。但考虑   0 0 \ 0^0  00没有意义,因此一般把对于   ℓ 0   \ {\ell _0}\,  0的优化问题转变为对于   ℓ 1   \ {\ell _1}\,  1的优化问题。
考虑到在实际应用中会出现噪声干扰等情况,一般约束条件可表示为
  ∣ ∣ y − A X ∣ ∣ p ⩽ ε   \ ||y-AX||_p\leqslant \varepsilon\  ∣∣yAXpε 

四、可重构条件

若要信号可被重构,则测量矩阵需要满足RIP(约束等距性质)
对于测量矩阵   A \ A  A满足:
  ( 1 − δ K ) ∣ ∣ x ∣ ∣ 2 2 ⩽ ∣ ∣ A x ∣ ∣ 2 2 ⩽ ( 1 + δ K ) ∣ ∣ x ∣ ∣ 2 2   \ (1 - {\delta _K})||x||_2^2 \leqslant ||Ax||_2^2 \leqslant (1 + {\delta _K})||x||_2^2\  (1δK)∣∣x22∣∣Ax22(1+δK)∣∣x22 其中,   0 < δ K < 1 \ 0< \delta _K <1  0<δK<1.
则认为系统满足可重构条件。
目前理论分析和实际应用中的测量矩阵分为随机矩阵、确定性矩阵和结构性矩阵三种。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月茗爱喝茶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值