参考文献
An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic LSB embedding
基本内容
基本关系梳理
压缩感知核心元素
- 信号 x
- 长度:N
- 动态稀疏或可用变换表示:x = 𝝍s
- 测量矩阵 𝚽
- 尺寸:M × N
- 变换矩阵 𝝍
- 变换类型:如DCT, DWT, FFT
- 系数向量 s
- 尺寸:N × 1
- 测量向量 y
- 尺寸:M × 1
- 定义:y = 𝚽x = 𝚽𝜓s = 𝐹s
- 感知矩阵 F
- 尺寸:M × N
- 与𝚽和𝝍的关系:F = 𝚽𝝍
- 重建信号 x 的方法
- 约束优化:min ‖𝐬‖1 s.t. 𝐲 = 𝚽𝜓𝑠
- 相关算法:匹配追踪 (MP), 正交匹配追踪 (OMP), 平滑化l0范数 (SL0)
应用
- 用于压缩和加密Iorig
- 测量向量作为Iciph
- 测量矩阵作为密钥
对应关系
变量 | 定义/描述 | 尺寸 | 公式相关被引用 |
---|---|---|---|
x | 信号 | N x 1 | x = 𝝍s, 𝐲 = 𝚽x |
𝚽 | 测量矩阵 | M x N | 𝐲 = 𝚽x |
𝝍 | 变换矩阵,可采用DCT, DWT, FFT等 | N x N | x = 𝝍s |
s | 稀疏系数向量 | N x 1 | x = 𝝍s |
y | 测量向量 | M x 1 | 𝐲 = 𝚽x = 𝚽𝜓s = 𝐹s |
F | 感知矩阵,定义为F=𝚽𝝍 | M x N | 𝐲 = F s |
‖s‖1 | s 的 l1-范数 | _ | min ‖𝐬‖1 |
Iorig | 原始图像数据(用途说明) | _ | _ |
Iciph | 加密后的测量向量(用途说明) | _ | _ |
此图和表格反映了压缩感知理论的核心概念及其内部关系,并说明了在图像加密和压缩中的实际应用案例。