基于Attention的行人重识别项目实战--Relation-Aware Global Attention for Person Re-identification

数据及代码链接见文末

1.项目环境与数据集配置

        在项目环境上,只需要我们装好pytorch即可,数据集推荐使用港中文大学数据集,源码中提供的是已经处理好的港中文大学数据集第三版。

CUHK Re-ID

        刚开始下载的文件只有release文件夹,里面只有一个.Mat文件夹,我们需要从中提取出所有的信息。 

         detected文件夹和labeled文件夹是两种信息,一种是通过目标检测算法检测出的行人数据,一个是人工标注的。

        数据通过6组摄像头获得,每个人有10张图片,通过一对摄像头获得,它的命名规则是最前面的1表示摄像头id,001表示这是第几个人。后面1表示这是这对摄像头id。再后面的01表示这个人的10张图片的序号。

2.参数配置和整体架构分析

        参数配置,

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值