关键点匹配——商汤LoFTR源码详解

本文详细解读了商汤科技的LoFTR关键点匹配算法,从项目配置、特征提取、注意力机制、粗粒度和细粒度匹配过程等方面进行深入探讨。LoFTR利用卷积神经网络提取图像特征,并结合自注意力和交叉注意力模块进行特征匹配。通过双softmax筛选匹配点,并在粗粒度匹配基础上进行细粒度匹配优化,最终确定精确的对应关系。
摘要由CSDN通过智能技术生成

源码地址见文末

1.项目与参数配置解读

        首先,进入目录,使用pip install -r requirements.txt配置环境。

        首先,对于demo的运行,首先需要准备好需要用于关键点匹配的数据,提供的代码中置于了image文件夹下,然后是训练的权重,代码中下载了室内场景和室外场景的训练权重。

 配置参数指定:

--weight outdoor_ds.ckpt
--save_video
--input ./images/
--output_dir ./output/

2.Backbone特征提取

        每次输入为两张图像,首先,使用卷积对两张图像进行特征提取。获得1/8和1/2尺度的粗粒度和细粒度特征图。源码中这部分使用的是resnet

class ResNetFPN_8_2(nn.Module):
    ""&#
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值