在pytorch自定义net实现回归算法

该文展示了如何利用PyTorch库创建一个具有单个输入、10个隐藏神经元和单个输出的神经网络。网络采用ReLU激活函数,使用SGD优化器和MSELoss损失函数进行训练,并通过可视化预测结果展示学习过程。
摘要由CSDN通过智能技术生成

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt

x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2 * torch.rand(x.size())
x, y = Variable(x), Variable(y)

class Net(torch.nn.Module):
def init(self, n_feature, n_hidden, n_output):
super(Net, self).init()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)

def forward(self, x):
    x = F.relu(self.hidden(x))
    x = self.predict(x)
    return x

‘’’
通常神经层都包括输入层、隐藏层和输出层。这里的输入层只有一个属性, 所以我们就只有一个输入;
隐藏层我们可以自己假设,这里我们假设隐藏层有10个神经元; 输出层和输入层的结构是一样的,所以我们的输出层也是只有一层。
所以,我们构建的是——输入层1个、隐藏层10个、输出层1个的神经网络。
‘’’
net = Net(1, 10, 1) # 隐藏神经元10个
print(net)

plt.ion() # plt.ion()用于连续显示
plt.show()

优化神经网络

optimizer = torch.optim.SGD(net.parameters(), lr=0.5) # lr学习效率,一般小于1
loss_func = torch.nn.MSELoss()

for t in range(100): # 让机器学习100次
prediction = net(x)

loss = loss_func(prediction, y)  # 计算预测值和真实值的误差,注意参数顺序,预测值在前,真实值在后

optimizer.zero_grad()  # 梯度设为0
loss.backward()
optimizer.step()  # 优化梯度
# 可视化
if t % 5 == 0:  # 每5步打印一次
    plt.cla()
    plt.scatter(x.data.numpy(), y.data.numpy())
    # 用红色、宽度为5的线来显示我们的预测数据和输入之间的关系,并暂停0.1s。
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
    plt.text(0.5, 0, 'Loss=%.4f' % loss.item(), fontdict={'size': 20, 'color': 'red'})
    plt.pause(0.1)

plt.ioff()
plt.show()

最终学习结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值