import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2 * torch.rand(x.size())
x, y = Variable(x), Variable(y)
class Net(torch.nn.Module):
def init(self, n_feature, n_hidden, n_output):
super(Net, self).init()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
‘’’
通常神经层都包括输入层、隐藏层和输出层。这里的输入层只有一个属性, 所以我们就只有一个输入;
隐藏层我们可以自己假设,这里我们假设隐藏层有10个神经元; 输出层和输入层的结构是一样的,所以我们的输出层也是只有一层。
所以,我们构建的是——输入层1个、隐藏层10个、输出层1个的神经网络。
‘’’
net = Net(1, 10, 1) # 隐藏神经元10个
print(net)
plt.ion() # plt.ion()用于连续显示
plt.show()
优化神经网络
optimizer = torch.optim.SGD(net.parameters(), lr=0.5) # lr学习效率,一般小于1
loss_func = torch.nn.MSELoss()
for t in range(100): # 让机器学习100次
prediction = net(x)
loss = loss_func(prediction, y) # 计算预测值和真实值的误差,注意参数顺序,预测值在前,真实值在后
optimizer.zero_grad() # 梯度设为0
loss.backward()
optimizer.step() # 优化梯度
# 可视化
if t % 5 == 0: # 每5步打印一次
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
# 用红色、宽度为5的线来显示我们的预测数据和输入之间的关系,并暂停0.1s。
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.item(), fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)
plt.ioff()
plt.show()
最终学习结果: