前言:
由于原模型只能预测一天,不满足需求,所以在上篇的基础模型上进行修改,使原模型可以预测未来多天结果。
修改之后,新模型可以根据多天的数据预测未来多天的结果。应用范围广泛,可以用于,股票预测,汇率预测,安全仓库预测,电力负荷预测等各种实际的应用。可以根据数据集的不同,使用该模型解决各种实际的预测问题。
由于项目数据集不公开,本文使用公开数据集,Beijing PM2.5 Data Set进行仿真实验。具体来说,根据前五天的环境变量信息,预测未来五天的污染值。
(23条消息) lstm多变量预测_wh来啦的博客-CSDN博客
模型结构对比:
原模型:
改进之后的模型:
使用公开数据集:
Beijing PM2.5 Data Set
下载数据集地址:
http://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
如果失效,百度直接搜索Beijing PM2.5 Data Set,也可以免费获取数据集。
数据预处理:
对数据进行清洗,得到可以使用的数据。数据清洗时需要根据数据本身的特点,进行针对性的清洗。
数据划分:
首先将数据划分为X,Y。本次实验需要设计输入五天的变量,输出未来五天的预测值,所以,n_in=5,表示需要历史五天的数据,n_out=5,表示