lstm 预测未来多天

前言:

       由于原模型只能预测一天,不满足需求,所以在上篇的基础模型上进行修改,使原模型可以预测未来多天结果。

      修改之后,新模型可以根据多天的数据预测未来多天的结果。应用范围广泛,可以用于,股票预测,汇率预测,安全仓库预测,电力负荷预测等各种实际的应用。可以根据数据集的不同,使用该模型解决各种实际的预测问题。

       由于项目数据集不公开,本文使用公开数据集,Beijing PM2.5 Data Set进行仿真实验。具体来说,根据前五天的环境变量信息,预测未来五天的污染值。

(23条消息) lstm多变量预测_wh来啦的博客-CSDN博客

模型结构对比:

原模型:

 改进之后的模型:

 使用公开数据集:

Beijing PM2.5 Data Set

下载数据集地址:

http://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data

如果失效,百度直接搜索Beijing PM2.5 Data Set,也可以免费获取数据集。

数据预处理:

  对数据进行清洗,得到可以使用的数据。数据清洗时需要根据数据本身的特点,进行针对性的清洗。

数据划分:

首先将数据划分为X,Y。本次实验需要设计输入五天的变量,输出未来五天的预测值,所以,n_in=5,表示需要历史五天的数据,n_out=5,表示

评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值