度量张量、协变基、逆变基与指标升降关系

逆变基的提出

在三维欧几里得空间 R 3 \mathbb{R} ^3 R3中,选取三个线性无关的基矢量 g a \boldsymbol{g}_a ga,则该空间中的任一矢量 P \boldsymbol{P} P可以表示为这三个基矢量的线性组合: P = P a g a \boldsymbol{P}=P^a\boldsymbol{g}_a P=Paga
由于基矢量之间没有正交性要求,所以 g a ⋅ g b \boldsymbol{g}_a\cdot \boldsymbol{g}_b gagb a ≠ b a\ne b a=b)不一定为0, ∥ g a ∥ 2 \left\| \boldsymbol{g}_a \right\| _2 ga2也不一定为1。这将给求两向量内积等运算带来不便,如令 P = P a g a \boldsymbol{P}=P^a\boldsymbol{g}_a P=Paga Q = Q b g b \boldsymbol{Q}=Q^b\boldsymbol{g}_b Q=Qbgb,则 P ⋅ Q = P a g a ⋅ Q b g b = P a Q b g a ⋅ g b \boldsymbol{P}\cdot \boldsymbol{Q}=P^a\boldsymbol{g}_a\cdot Q^b\boldsymbol{g}_b=P^aQ^b\boldsymbol{g}_a\cdot \boldsymbol{g}_b PQ=PagaQbgb=PaQbgagb,需要进行3×3=9次计算。
今而希望对选定的三个基矢量 g a \boldsymbol{g}_a ga(称为协变基),有另外一组由其唯一确定的三个基矢量 g b \boldsymbol{g}^b gb(称为逆变基),满足:
δ a b = g a ⋅ g b = { 1 , a = b 0 , a ≠ b \delta _{a}^{b}=\boldsymbol{g}_a\cdot \boldsymbol{g}^b=\begin{cases} 1,a=b\\ 0,a\ne b\\ \end{cases} δab=gagb={1,a=b0,a=b
δ a b \delta _{a}^{b} δab即所谓kroneckerδ。那么,在求两个向量内积时,只要一个向量向协变基分解,另一个向量向逆变基分解,只需进行3次计算。

由协变基求逆变基

逆变基向协变基分解: g i = g i j g j \boldsymbol{g}^i=g^{ij}\boldsymbol{g}_j gi=gijgj,则 g i ⋅ g j = g i k g k ⋅ g j = g i k δ j k = g i j \boldsymbol{g}^i\cdot \boldsymbol{g}^j=g^{ik}\boldsymbol{g}_k\cdot \boldsymbol{g}^j=g^{ik}\delta _{j}^{k}=g^{ij} gigj=gikgkgj=gikδjk=gij(称为度量张量的逆变分量)。
同样,协变基也可以向逆变基分解: g i = g i j g j \boldsymbol{g}_i=g_{ij}\boldsymbol{g}^j gi=gijgj,则 g i ⋅ g j = g i k g k ⋅ g j = g i k δ j k = g i j \boldsymbol{g}_i\cdot \boldsymbol{g}_j=g_{ik}\boldsymbol{g}^k\cdot \boldsymbol{g}_j=g_{ik}\delta _{j}^{k}=g_{ij} gigj=gikgkgj=gikδjk=gij(称为度量张量的协变分量)。
同时可得 g i j = g j i g_{ij}=g_{ji} gij=gji g i j = g j i g^{ij}=g^{ji} gij=gji
因为:
δ j i = g i ⋅ g j = g i ⋅ g j k g k = g i k g j k = g i k g k j \delta _{j}^{i}=\boldsymbol{g}^i\cdot \boldsymbol{g}_j=\boldsymbol{g}^i\cdot g_{jk}\boldsymbol{g}^k=g^{ik}g_{jk}=g^{ik}g_{kj} δji=gigj=gigjkgk=gikgjk=gikgkj
所以:
[ g i j ] = [ g i j ] − 1 \left[ g_{ij} \right] =\left[ g^{ij} \right] ^{-1} [gij]=[gij]1
至此,在选定协变基后,根据 g i ⋅ g j = g i j \boldsymbol{g}_i\cdot \boldsymbol{g}_j=g_{ij} gigj=gij求出度量张量的各协变分量,再由 [ g i j ] = [ g i j ] − 1 \left[ g_{ij} \right] =\left[ g^{ij} \right] ^{-1} [gij]=[gij]1求出度量张量的各逆变分量,最后由 g i = g i j g j \boldsymbol{g}^i=g^{ij}\boldsymbol{g}_j gi=gijgj求得各逆变基。

指标升降关系

矢量 P \boldsymbol{P} P既可以向协变基分解,又可以向逆变基分解:
P = P i g i = P j g j \boldsymbol{P}=P^i\boldsymbol{g}_i=P^j\boldsymbol{g}_j P=Pigi=Pjgj
则:
P i = P ⋅ g i = P j g j ⋅ g i = P j g i j P i = P ⋅ g i = P j g j ⋅ g i = P j g i j P^i=\boldsymbol{P}\cdot \boldsymbol{g}^i=P_j\boldsymbol{g}^j\cdot \boldsymbol{g}^i=P_jg^{ij} \\ P_i=\boldsymbol{P}\cdot \boldsymbol{g}_i=P^j\boldsymbol{g}_j\cdot \boldsymbol{g}_i=P^jg_{ij} Pi=Pgi=Pjgjgi=PjgijPi=Pgi=Pjgjgi=Pjgij
可见,若想降指标,则需度量张量的逆变分量;想要升指标,则需度量张量的协变分量。则 R 3 \mathbb{R} ^3 R3中两个向量的内积可表示为:
u ⋅ v = u i v i = u i v i = u i v j g i j = u i v j g i j \boldsymbol{u}\cdot \boldsymbol{v}=u^iv_i=u_iv^i=u_iv_jg^{ij}=u^iv^jg_{ij} uv=uivi=uivi=uivjgij=uivjgij

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值