003欧几里得空间的协变基与逆变基,指标升降

R m 的 基 { g α } α = 1 m , 需 要 满 足 d e t [ g 1 , … , g m ] ≠ 0 , [ g 1 , … , g m ] ∈ R m , m 可 逆 ∃   R m 的 基 { g β } β = 1 m , 满 足 ( g α , g β ) = δ α β δ α β = { 1    α = β 0    α ≠ β 将 下 标 称 为 协 变 基 { g α } α = 1 m , 上 标 称 为 逆 变 基 { g β } β = 1 m R^m的基\{ g_\alpha\}_{\alpha =1}^m,\\ 需要满足det[g_1,…,g_m]\neq 0,[g_1,…,g_m]\in R^{m,m}可逆\\ \exists \ R^m的基\{ g^\beta \}_{\beta =1}^m,满足(g_\alpha,g^\beta)=\delta_\alpha^\beta\\ \delta_\alpha^\beta=\left\{\begin{array}{l}1 \ \ \alpha = \beta\\0 \ \ \alpha \neq \beta\end{array}\right.\\ 将下标称为协变基\{ g_\alpha\}_{\alpha =1}^m,上标称为逆变基\{ g^\beta \}_{\beta =1}^m Rm{gα}α=1m,det[g1,gm]=0,[g1,gm]Rm,m Rm{gβ}β=1m,(gα,gβ)=δαβδαβ={1  α=β0  α=β{gα}α=1m{gβ}β=1m
[ ( g 1 ) T … ( g m ) T ] [ g 1 , … , g m ] = I 可 利 用 线 性 代 数 的 知 识 得 到 , 对 于 某 协 变 基 , 逆 变 基 是 唯 一 确 定 的 协 变 基 求 逆 再 求 转 置 既 得 逆 变 基 \begin{bmatrix}(g^1)^T\\…\\(g^m)^T\end{bmatrix}[g_1,…,g_m]=I \\ 可利用线性代数的知识得到,对于某协变基,逆变基是唯一确定的\\ 协变基求逆再求转置既得逆变基 (g1)T(gm)T[g1,gm]=I线

典 则 基 : 标 准 正 交 基 { i α } , ξ ∈ R m = { ξ α g α ( 已 用 爱 因 斯 坦 求 和 约 定 省 略 , 逆 变 分 量 ξ α = ( ξ , g α ) ) ξ β g β ( , 其 中 协 变 分 量 ξ β = ( ξ , g β ) ) 典则基:标准正交基\{i_\alpha \},\\ \xi \in R^m=\left\{\begin{array}{l} \xi^\alpha g_\alpha (已用爱因斯坦求和约定省略,逆变分量\xi^\alpha=(\xi,g^\alpha)) \\ \xi_\beta g^\beta (,其中协变分量\xi_\beta=(\xi,g_\beta)) \end{array}\right. \\ {iα}ξRm={ξαgα,ξα=(ξ,gα)ξβgβξβ=(ξ,gβ)

先 引 入 一 个 概 念 : 度 量 张 量 g α , β = ( g α , g β ) , g α , β = ( g α , g β ) ( g α , g β ) = δ α β g α , γ g γ , β = δ α β   ( α ∈ 1 … … m , β 同 样 ) ? 先引入一个概念: 度量张量g_{\alpha,\beta }=(g_\alpha,g_\beta), g^{\alpha,\beta }=(g^\alpha,g^\beta)\\ (g_\alpha,g^\beta)=\delta_\alpha^\beta\\ g_{\alpha,\gamma }g^{\gamma,\beta }=\delta_\alpha^\beta\ (\alpha\in 1……m,\beta同样) ?\\ gα,β=(gα,gβ),gα,β=(gα,gβ)(gα,gβ)=δαβgα,γgγ,β=δαβ (α1m,β)
结 构 : 协 变 基 与 逆 变 基 是 两 组 向 量 , 可 以 相 互 表 示 因 为 ξ ∈ R m = { ξ α g α ( 已 用 爱 因 斯 坦 求 和 约 定 省 略 ) ξ β g β ( 逆 变 分 量 ξ α = ( ξ , g α ) , 其 中 协 变 分 量 ξ β = ( ξ , g β ) ) 所 以 g α ∈ R m = { ( g α , g β ) g β    = δ α β g β ( g α , g β ) g β    = g α , β g β 结构:协变基与逆变基是两组向量,可以相互表示\\ 因为\xi \in R^m=\left\{\begin{array}{l} \xi^\alpha g_\alpha (已用爱因斯坦求和约定省略) \\ \xi_\beta g^\beta (逆变分量\xi^\alpha=(\xi,g^\alpha),其中协变分量\xi_\beta=(\xi,g_\beta)) \end{array}\right. \\ 所以g_\alpha \in R^m=\left\{\begin{array}{l} (g_\alpha,g^\beta) g_\beta \ \ =\delta_\alpha^\beta g_\beta \\ (g_\alpha,g_\beta) g^\beta \ \ = \color{red} g_{\alpha,\beta } \color{black} g^\beta \end{array}\right. \\ ξRm={ξαgαξβgβξα=(ξ,gα)ξβ=(ξ,gβ)gαRm={(gα,gβ)gβ  =δαβgβ(gα,gβ)gβ  =gα,βgβ
{ g α    = g α , β g β g α    = g α , β g β 这 个 就 是 著 名 的 指 标 升 降 ( 是 对 基 向 量 而 言 的 ) \left\{\begin{array}{l} g_\alpha \ \ = \color{red} g_{\alpha,\beta } \color{black} g^\beta \\ g^\alpha \ \ = \color{red} g^{\alpha,\beta } \color{black} g_\beta \end{array}\right.\\ \large 这个就是著名的\color{red} 指标升降(是对基向量而言的) {gα  =gα,βgβgα  =gα,βgβ()

g α , γ g γ , β = δ α β g α , γ g γ , β = ( g α , g γ ) g γ , β = ( g α , g γ , β ∗ g γ ) = ( g α , g β ) g_{\alpha,\gamma }g^{\gamma,\beta }=\delta_\alpha^\beta \\ g_{\alpha,\gamma }g^{\gamma,\beta }\\ =(g_\alpha ,g_\gamma) g^{\gamma,\beta }\\ =(g_\alpha ,g^{\gamma,\beta }*g_\gamma)\\ =(g_\alpha ,g_\beta)\\ gα,γgγ,β=δαβgα,γgγ,β=(gα,gγ)gγ,β=(gα,gγ,βgγ)=(gα,gβ)

度量张量

度 量 张 量 定 义 为 ( 协 变 定 义 的 ) : g α , β g α ⊗ g β , 一 个 标 量 × 一 个 简 单 张 量 由 简 单 张 量 的 构 成 , 上 式 还 可 写 为 { ( g α , β g α ) ⊗ g β = g β ⊗ g β = δ β α g α ⊗ g β g α ⊗ ( g α , β g β ) = g α ⊗ g α = δ α β g α ⊗ g β 度量张量定义为(协变定义的):g_{\alpha,\beta}g^\alpha \otimes g^\beta,一个标量×一个简单张量\\ 由简单张量的构成,上式还可写为 \left\{\begin{array}{l} (g_{\alpha,\beta}g^\alpha) \otimes g^\beta = g_\beta \otimes g^\beta =\delta_\beta^\alpha g_\alpha \otimes g^\beta \\ g^\alpha \otimes (g_{\alpha,\beta} g^\beta) =g^\alpha \otimes g_\alpha =\delta_\alpha^\beta g^\alpha \otimes g_\beta \\ \end{array}\right. gα,βgαgβ,×{(gα,βgα)gβ=gβgβ=δβαgαgβgα(gα,βgβ)=gαgα=δαβgαgβ

转换一下:
在这里插入图片描述
在这里插入图片描述

课外拓展

加来道雄书中的「度规张量」是什么?

正定度规:
度规用正交归一基底写成对角矩阵后,对角元如果全为+1,则称该度规是正定度规,如果全为-1,则称为负定度规。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值