在一般的曲线坐标系中:
d
r
⃗
=
∂
r
⃗
∂
x
i
d
x
i
d\vec{r}=\frac{\partial\vec{r}}{\partial x^i}d x^i
dr=∂xi∂rdxi定义协变基矢/自然基矢:
g
⃗
i
=
∂
r
⃗
∂
x
i
\vec{g}_i=\frac{\partial\vec{r}}{\partial x^i}
gi=∂xi∂r显然,协变基矢
g
⃗
i
\vec{g}_i
gi与坐标线
x
i
x_i
xi的相切,指向其正方向,大小为坐标
x
i
x_i
xi变化单位增量时前后两点的距离。借助直角坐标系作为参考:
r
⃗
(
x
1
,
x
2
,
x
3
)
=
x
(
x
1
,
x
2
,
x
3
)
i
⃗
+
y
(
x
1
,
x
2
,
x
3
)
j
⃗
+
z
(
x
1
,
x
2
,
x
3
)
k
⃗
\vec{r}(x^1,x^2,x^3)=x(x^1,x^2,x^3)\vec{i}+y(x^1,x^2,x^3)\vec{j}+z(x^1,x^2,x^3)\vec{k}
r(x1,x2,x3)=x(x1,x2,x3)i+y(x1,x2,x3)j+z(x1,x2,x3)k则:
{
g
⃗
1
=
∂
x
∂
x
1
i
⃗
+
∂
y
∂
x
1
j
⃗
+
∂
z
∂
x
1
k
⃗
=
[
∂
x
∂
x
1
∂
y
∂
x
1
∂
z
∂
x
1
]
T
g
⃗
2
=
∂
x
∂
x
2
i
⃗
+
∂
y
∂
x
2
j
⃗
+
∂
z
∂
x
2
k
⃗
=
[
∂
x
∂
x
2
∂
y
∂
x
2
∂
z
∂
x
2
]
T
g
⃗
3
=
∂
x
∂
x
3
i
⃗
+
∂
y
∂
x
3
j
⃗
+
∂
z
∂
x
3
k
⃗
=
[
∂
x
∂
x
3
∂
y
∂
x
3
∂
z
∂
x
3
]
T
\begin{cases} \vec{g}_1=\dfrac{\partial x}{\partial x^1}\vec{i}+\dfrac{\partial y}{\partial x^1}\vec{j}+\dfrac{\partial z}{\partial x^1}\vec{k}=\begin{bmatrix}\dfrac{\partial x}{\partial x^1}&\dfrac{\partial y}{\partial x^1}&\dfrac{\partial z}{\partial x^1}\end{bmatrix}^T\\ \\ \vec{g}_2=\dfrac{\partial x}{\partial x^2}\vec{i}+\dfrac{\partial y}{\partial x^2}\vec{j}+\dfrac{\partial z}{\partial x^2}\vec{k}=\begin{bmatrix}\dfrac{\partial x}{\partial x^2}&\dfrac{\partial y}{\partial x^2}&\dfrac{\partial z}{\partial x^2}\end{bmatrix}^T\\ \\ \vec{g}_3=\dfrac{\partial x}{\partial x^3}\vec{i}+\dfrac{\partial y}{\partial x^3}\vec{j}+\dfrac{\partial z}{\partial x^3}\vec{k}=\begin{bmatrix}\dfrac{\partial x}{\partial x^3}&\dfrac{\partial y}{\partial x^3}&\dfrac{\partial z}{\partial x^3}\end{bmatrix}^T \end{cases}
⎩
⎨
⎧g1=∂x1∂xi+∂x1∂yj+∂x1∂zk=[∂x1∂x∂x1∂y∂x1∂z]Tg2=∂x2∂xi+∂x2∂yj+∂x2∂zk=[∂x2∂x∂x2∂y∂x2∂z]Tg3=∂x3∂xi+∂x3∂yj+∂x3∂zk=[∂x3∂x∂x3∂y∂x3∂z]T
由于
d
e
t
(
[
g
⃗
1
g
⃗
2
g
⃗
3
]
)
=
g
⃗
1
∙
(
g
⃗
2
×
g
⃗
3
)
=
g
=
∣
∂
x
∂
x
1
∂
x
∂
x
2
∂
x
∂
x
3
∂
y
∂
x
1
∂
y
∂
x
2
∂
y
∂
x
3
∂
z
∂
x
1
∂
y
∂
x
2
∂
y
∂
x
3
∣
=
d
e
t
(
∂
(
x
,
y
,
z
)
∂
(
x
1
,
x
2
,
x
3
)
)
≠
0
(不为零由曲线坐标系的定义得到)
det(\begin{bmatrix}\vec{g}_1&\vec{g}_2&\vec{g}_3\end{bmatrix}) =\vec{g}_1\bullet(\vec{g}_2\times\vec{g}_3)=\sqrt{g} =\begin{vmatrix} \dfrac{\partial x}{\partial x^1}&\dfrac{\partial x}{\partial x^2}&\dfrac{\partial x}{\partial x^3}\\ \\ \dfrac{\partial y}{\partial x^1}&\dfrac{\partial y}{\partial x^2}&\dfrac{\partial y}{\partial x^3}\\ \\ \dfrac{\partial z}{\partial x^1}&\dfrac{\partial y}{\partial x^2}&\dfrac{\partial y}{\partial x^3} \end{vmatrix} =det\left(\dfrac{\partial(x,y,z)}{\partial(x^1,x^2,x^3)}\right)\ne0(不为零由曲线坐标系的定义得到)
det([g1g2g3])=g1∙(g2×g3)=g=∣
∣∂x1∂x∂x1∂y∂x1∂z∂x2∂x∂x2∂y∂x2∂y∂x3∂x∂x3∂y∂x3∂y∣
∣=det(∂(x1,x2,x3)∂(x,y,z))=0(不为零由曲线坐标系的定义得到)
则说明向量组
{
g
⃗
1
,
g
⃗
2
,
g
⃗
2
}
\{\vec{g}_1,\vec{g}_2,\vec{g}_2\}
{g1,g2,g2}线性无关,其中 将
g
\sqrt{g}
g 称作体积单元 ,那么该向量组在空间中任意一点可构成一个坐标架 (切标架)。考虑某个矢量
v
⃗
\vec{v}
v 在协变基矢构成的局部基上的分解:
v
⃗
=
p
i
g
⃗
i
=
p
1
g
⃗
1
+
p
2
g
⃗
2
+
p
3
g
⃗
3
\vec{v}=p^i\vec{g}_i=p^1\vec{g}_1+p^2\vec{g}_2+p^3\vec{g}_3
v=pigi=p1g1+p2g2+p3g3为求解矢量的逆变分量
p
i
p^i
pi ,有:
{
p
1
(
g
⃗
1
,
g
⃗
1
)
+
p
2
(
g
⃗
2
,
g
⃗
1
)
+
p
3
(
g
⃗
3
,
g
⃗
1
)
=
(
v
⃗
,
g
⃗
1
)
p
1
(
g
⃗
1
,
g
⃗
2
)
+
p
2
(
g
⃗
2
,
g
⃗
2
)
+
p
3
(
g
⃗
3
,
g
⃗
2
)
=
(
v
⃗
,
g
⃗
2
)
p
1
(
g
⃗
1
,
g
⃗
3
)
+
p
2
(
g
⃗
2
,
g
⃗
3
)
+
p
3
(
g
⃗
3
,
g
⃗
3
)
=
(
v
⃗
,
g
⃗
1
)
\begin{cases} p^1(\vec{g}_1,\vec{g}_1)+p^2(\vec{g}_2,\vec{g}_1)+p^3(\vec{g}_3,\vec{g}_1)=(\vec{v},\vec{g}_1)\\ p^1(\vec{g}_1,\vec{g}_2)+p^2(\vec{g}_2,\vec{g}_2)+p^3(\vec{g}_3,\vec{g}_2)=(\vec{v},\vec{g}_2)\\ p^1(\vec{g}_1,\vec{g}_3)+p^2(\vec{g}_2,\vec{g}_3)+p^3(\vec{g}_3,\vec{g}_3)=(\vec{v},\vec{g}_1) \end{cases}
⎩
⎨
⎧p1(g1,g1)+p2(g2,g1)+p3(g3,g1)=(v,g1)p1(g1,g2)+p2(g2,g2)+p3(g3,g2)=(v,g2)p1(g1,g3)+p2(g2,g3)+p3(g3,g3)=(v,g1)上述非齐次线性方程组总是有解的,因为其系数矩阵可逆,即:
∣
(
g
⃗
1
,
g
⃗
1
)
(
g
⃗
2
,
g
⃗
1
)
(
g
⃗
3
,
g
⃗
1
)
(
g
⃗
1
,
g
⃗
2
)
(
g
⃗
2
,
g
⃗
2
)
(
g
⃗
3
,
g
⃗
2
)
(
g
⃗
1
,
g
⃗
3
)
(
g
⃗
2
,
g
⃗
3
)
(
g
⃗
3
,
g
⃗
3
)
∣
=
[
g
⃗
1
∙
(
g
⃗
2
×
g
⃗
3
)
]
2
≠
0
\begin{vmatrix} (\vec{g}_1,\vec{g}_1)&(\vec{g}_2,\vec{g}_1)&(\vec{g}_3,\vec{g}_1)\\ \\ (\vec{g}_1,\vec{g}_2)&(\vec{g}_2,\vec{g}_2)&(\vec{g}_3,\vec{g}_2)\\ \\ (\vec{g}_1,\vec{g}_3)&(\vec{g}_2,\vec{g}_3)&(\vec{g}_3,\vec{g}_3) \end{vmatrix} = [\vec{g}_1\bullet(\vec{g}_2\times\vec{g}_3)]^2\ne0
∣
∣(g1,g1)(g1,g2)(g1,g3)(g2,g1)(g2,g2)(g2,g3)(g3,g1)(g3,g2)(g3,g3)∣
∣=[g1∙(g2×g3)]2=0但上述求解过程较麻烦,为更方便地求解逆变分量引入逆变基矢
g
⃗
j
\vec{g}^j
gj,要求其与协变基矢满足对偶关系:
(
g
⃗
i
,
g
⃗
j
)
=
δ
i
j
=
{
1
(
i
=
j
)
0
(
i
≠
j
)
(\vec{g}_i,\vec{g}^j)=\delta_i^j=\begin{cases}1\quad(i=j)\\0\quad(i\ne j)\end{cases}
(gi,gj)=δij={1(i=j)0(i=j)那么
p
i
=
(
v
⃗
,
g
⃗
i
)
p^i=(\vec{v},\vec{g}^i)
pi=(v,gi)接下来根据对偶关系由协变基矢求解逆变基矢:
方法一:
参考直角坐标系讨论,设
g
⃗
j
=
g
1
j
i
⃗
+
g
2
j
j
⃗
+
g
3
j
k
⃗
=
[
g
1
j
g
2
j
g
3
j
]
T
(
j
=
1
,
2
,
3
)
\vec{g}^j=g^j_1\vec{i}+g^j_2\vec{j}+g^j_3\vec{k}=\begin{bmatrix}g^j_1&g^j_2&g^j_3\end{bmatrix}^T\quad(j=1,2,3)
gj=g1ji+g2jj+g3jk=[g1jg2jg3j]T(j=1,2,3)不妨以
j
=
1
j=1
j=1 时进行讨论:
{
(
g
⃗
1
,
g
⃗
1
)
=
g
1
1
∂
x
∂
x
1
+
g
2
1
∂
y
∂
x
1
+
g
3
1
∂
z
∂
x
1
=
1
(
g
⃗
1
,
g
⃗
2
)
=
g
1
1
∂
x
∂
x
2
+
g
2
1
∂
y
∂
x
2
+
g
3
1
∂
z
∂
x
2
=
0
(
g
⃗
1
,
g
⃗
1
)
=
g
1
1
∂
x
∂
x
3
+
g
2
1
∂
y
∂
x
3
+
g
3
1
∂
z
∂
x
3
=
0
\begin{cases} (\vec{g}^1,\vec{g}_1)=g^1_1\dfrac{\partial x}{\partial x^1}+g^1_2\dfrac{\partial y}{\partial x^1}+g^1_3\dfrac{\partial z}{\partial x^1}=1\\ \\ (\vec{g}^1,\vec{g}_2)=g^1_1\dfrac{\partial x}{\partial x^2}+g^1_2\dfrac{\partial y}{\partial x^2}+g^1_3\dfrac{\partial z}{\partial x^2}=0\\ \\ (\vec{g}^1,\vec{g}_1)=g^1_1\dfrac{\partial x}{\partial x^3}+g^1_2\dfrac{\partial y}{\partial x^3}+g^1_3\dfrac{\partial z}{\partial x^3}=0 \end{cases}
⎩
⎨
⎧(g1,g1)=g11∂x1∂x+g21∂x1∂y+g31∂x1∂z=1(g1,g2)=g11∂x2∂x+g21∂x2∂y+g31∂x2∂z=0(g1,g1)=g11∂x3∂x+g21∂x3∂y+g31∂x3∂z=0由于系数矩阵满足:
d
e
t
(
∂
(
x
,
y
,
z
)
∂
(
x
1
,
x
2
,
x
3
)
T
)
=
d
e
t
(
∂
(
x
,
y
,
z
)
∂
(
x
1
,
x
2
,
x
3
)
)
≠
0
,
∂
(
x
,
y
,
z
)
∂
(
x
1
,
x
2
,
x
3
)
∂
(
x
1
,
x
2
,
x
3
)
∂
(
x
,
y
,
z
)
=
E
det\left(\dfrac{\partial (x,y,z)}{\partial (x^1,x^2,x^3)}^T\right)=det\left(\dfrac{\partial (x,y,z)}{\partial (x^1,x^2,x^3)}\right)\ne0,\dfrac{\partial (x,y,z)}{\partial (x^1,x^2,x^3)}\dfrac{\partial (x^1,x^2,x^3)}{\partial (x,y,z)}=E
det(∂(x1,x2,x3)∂(x,y,z)T)=det(∂(x1,x2,x3)∂(x,y,z))=0,∂(x1,x2,x3)∂(x,y,z)∂(x,y,z)∂(x1,x2,x3)=E故
[
g
⃗
1
1
g
⃗
2
1
g
⃗
3
1
]
=
[
∂
x
1
∂
x
∂
x
2
∂
x
∂
x
3
∂
x
∂
x
1
∂
y
∂
x
2
∂
y
∂
x
3
∂
y
∂
x
1
∂
z
∂
x
2
∂
z
∂
x
3
∂
z
]
[
1
0
0
]
\begin{bmatrix} \vec{g}^1_1\\ \\ \vec{g}^1_2\\ \\ \vec{g}^1_3 \end{bmatrix} = \begin{bmatrix} %%%%%%%%%% \dfrac{\partial x^1}{\partial x}&\dfrac{\partial x^2}{\partial x}&\dfrac{\partial x^3}{\partial x}\\ \\ \dfrac{\partial x^1}{\partial y}&\dfrac{\partial x^2}{\partial y}&\dfrac{\partial x^3}{\partial y}\\ \\ \dfrac{\partial x^1}{\partial z}&\dfrac{\partial x^2}{\partial z}&\dfrac{\partial x^3}{\partial z} \end{bmatrix} \begin{bmatrix} %%%%%%%%%%% 1\\ \\ 0\\ \\ 0 \end{bmatrix}
⎣
⎡g11g21g31⎦
⎤=⎣
⎡∂x∂x1∂y∂x1∂z∂x1∂x∂x2∂y∂x2∂z∂x2∂x∂x3∂y∂x3∂z∂x3⎦
⎤⎣
⎡100⎦
⎤同理可求得
g
⃗
2
,
g
⃗
3
\vec{g}^2,\vec{g}^3
g2,g3,即
[
g
⃗
1
g
⃗
2
g
⃗
3
]
=
[
g
⃗
1
1
g
⃗
1
2
g
⃗
1
3
g
⃗
2
1
g
⃗
2
2
g
⃗
2
3
g
⃗
3
1
g
⃗
3
2
g
⃗
3
3
]
=
[
∂
x
1
∂
x
∂
x
2
∂
x
∂
x
3
∂
x
∂
x
1
∂
y
∂
x
2
∂
y
∂
x
3
∂
y
∂
x
1
∂
z
∂
x
2
∂
z
∂
x
3
∂
z
]
[
1
0
0
0
1
0
0
0
1
]
=
(
∂
(
x
1
,
x
2
,
x
3
)
∂
(
x
,
y
,
z
)
)
T
\begin{bmatrix}\vec{g}^1&\vec{g}^2&\vec{g}^3\end{bmatrix}= \begin{bmatrix}%%%%%%%%%%%%%%% \vec{g}^1_1&\vec{g}^2_1&\vec{g}^3_1\\ \\ \vec{g}^1_2&\vec{g}^2_2&\vec{g}^3_2\\ \\ \vec{g}^1_3&\vec{g}^2_3&\vec{g}^3_3 \end{bmatrix} =\begin{bmatrix} %%%%%%%%%% \dfrac{\partial x^1}{\partial x}&\dfrac{\partial x^2}{\partial x}&\dfrac{\partial x^3}{\partial x}\\ \\ \dfrac{\partial x^1}{\partial y}&\dfrac{\partial x^2}{\partial y}&\dfrac{\partial x^3}{\partial y}\\ \\ \dfrac{\partial x^1}{\partial z}&\dfrac{\partial x^2}{\partial z}&\dfrac{\partial x^3}{\partial z} \end{bmatrix} \begin{bmatrix} %%%%%%%%%%% 1&0&0\\ \\ 0&1&0\\ \\ 0&0&1 \end{bmatrix} =\left(\dfrac{\partial (x^1,x^2,x^3)}{\partial (x,y,z)}\right)^T%%%%%
[g1g2g3]=⎣
⎡g11g21g31g12g22g32g13g23g33⎦
⎤=⎣
⎡∂x∂x1∂y∂x1∂z∂x1∂x∂x2∂y∂x2∂z∂x2∂x∂x3∂y∂x3∂z∂x3⎦
⎤⎣
⎡100010001⎦
⎤=(∂(x,y,z)∂(x1,x2,x3))T换而言之,
g
⃗
i
=
▽
x
i
(
x
,
y
,
z
)
(
i
=
1
,
2
,
3
)
\vec{g}^i=\bigtriangledown x^i(x,y,z)\qquad(i=1,2,3)
gi=▽xi(x,y,z)(i=1,2,3)这说明,逆变基矢为坐标面的梯度,方向沿某点坐标面的法向。
另外,由上述结论可知:
d
e
t
(
[
g
⃗
1
g
⃗
2
g
⃗
3
]
)
≠
0
det(\begin{bmatrix}\vec{g}^1&\vec{g}^2&\vec{g}^3\end{bmatrix})\ne0
det([g1g2g3])=0,说明逆变基矢构成的向量组也是线性无关的,可构成
R
3
\mathbb{R}^3
R3 中的一组基。
方法二:
由对偶关系:
g
⃗
1
\vec{g}^1
g1 同时与
g
⃗
2
,
g
⃗
3
\vec{g}_2,\vec{g}_3
g2,g3 垂直,则应有:
g
⃗
1
=
c
(
g
⃗
2
×
g
⃗
3
)
\vec{g}^1=c(\vec{g}_2\times\vec{g}_3)
g1=c(g2×g3)进一步利用对偶关系:
1
=
(
g
⃗
1
,
g
⃗
1
)
=
c
[
g
⃗
1
∙
(
g
⃗
2
×
g
⃗
3
)
]
=
c
g
⟹
c
=
1
g
⟹
g
⃗
1
=
g
⃗
2
×
g
⃗
3
g
1=(\vec{g}^1,\vec{g}_1)=c[\vec{g}_1\bullet(\vec{g}_2\times\vec{g}_3)]=c\sqrt{g}\Longrightarrow c=\frac{1}{\sqrt{g}}\Longrightarrow\vec{g}^1=\dfrac{\vec{g}_2\times\vec{g}_3}{\sqrt{g}}
1=(g1,g1)=c[g1∙(g2×g3)]=cg⟹c=g1⟹g1=gg2×g3同理
g
⃗
2
=
g
⃗
3
×
g
⃗
1
g
g
⃗
3
=
g
⃗
1
×
g
⃗
2
g
(
注意:协变基矢叉乘的次序问题
)
\vec{g}^2=\dfrac{\vec{g}_3\times\vec{g}_1}{\sqrt{g}}\\ \quad\\ \vec{g}^3=\dfrac{\vec{g}_1\times\vec{g}_2}{\sqrt{g}}\\ \quad\\ (注意:协变基矢叉乘的次序问题)
g2=gg3×g1g3=gg1×g2(注意:协变基矢叉乘的次序问题)方法三:
将逆变基矢在协变基矢构成的基上进行分解有:
[
g
⃗
1
g
⃗
2
g
⃗
3
]
=
[
g
⃗
1
g
⃗
2
g
⃗
3
]
[
g
11
g
12
g
13
g
21
g
22
g
23
g
31
g
32
g
33
]
⟺
g
⃗
j
=
g
i
j
g
⃗
i
(
i
.
j
=
1
,
2
,
3
)
\begin{bmatrix}\vec{g}^1&\vec{g}^2&\vec{g}^3\end{bmatrix}= \begin{bmatrix}\vec{g}_1&\vec{g}_2&\vec{g}_3\end{bmatrix}%%%%%%%%% \begin{bmatrix}%%%%%%%%%%%%%%%% g^{11}&g^{12}&g^{13}\\ g^{21}&g^{22}&g^{23}\\ g^{31}&g^{32}&g^{33} \end{bmatrix}\Longleftrightarrow \vec{g}^j=g^{ij}\vec{g}_i\quad(i.j=1,2,3)
[g1g2g3]=[g1g2g3]⎣
⎡g11g21g31g12g22g32g13g23g33⎦
⎤⟺gj=gijgi(i.j=1,2,3)由对偶关系:
(
g
⃗
i
,
g
⃗
j
)
=
(
g
⃗
i
,
g
k
j
g
⃗
k
)
=
g
k
j
(
g
⃗
i
,
g
⃗
k
)
=
g
k
j
δ
k
i
=
g
i
j
⟹
g
i
j
=
(
g
⃗
i
,
g
⃗
j
)
=
g
j
i
(\vec{g}^i,\vec{g}^j)=(\vec{g}^i,g^{kj}\vec{g}_k)=g^{kj}(\vec{g}^i,\vec{g}_k)=g^{kj}\delta^i_k=g^{ij}\Longrightarrow g^{ij}=(\vec{g}^i,\vec{g}^j)=g^{ji}
(gi,gj)=(gi,gkjgk)=gkj(gi,gk)=gkjδki=gij⟹gij=(gi,gj)=gji同理,将协变基矢在逆变基矢构成的基上进行分解:
[
g
⃗
1
g
⃗
2
g
⃗
3
]
=
[
g
⃗
1
g
⃗
2
g
⃗
3
]
[
g
11
g
12
g
13
g
21
g
22
g
23
g
31
g
32
g
33
]
⟺
g
⃗
j
=
g
i
j
g
⃗
i
(
i
.
j
=
1
,
2
,
3
)
\begin{bmatrix}\vec{g}_1&\vec{g}_2&\vec{g}_3\end{bmatrix}= \begin{bmatrix}\vec{g}^1&\vec{g}^2&\vec{g}^3\end{bmatrix}%%%%%%%%% \begin{bmatrix}%%%%%%%%%%%%%%%% g_{11}&g_{12}&g_{13}\\ g_{21}&g_{22}&g_{23}\\ g_{31}&g_{32}&g_{33} \end{bmatrix}\Longleftrightarrow \vec{g}_j=g_{ij}\vec{g}^i\quad(i.j=1,2,3)
[g1g2g3]=[g1g2g3]⎣
⎡g11g21g31g12g22g32g13g23g33⎦
⎤⟺gj=gijgi(i.j=1,2,3)由对偶关系:
(
g
⃗
i
,
g
⃗
j
)
=
(
g
⃗
i
,
g
k
j
g
⃗
k
)
=
g
k
j
(
g
⃗
i
,
g
⃗
k
)
=
g
k
j
δ
i
k
=
g
i
j
⟹
g
i
j
=
(
g
⃗
i
,
g
⃗
j
)
=
g
j
i
(\vec{g}_i,\vec{g}_j)=(\vec{g}_i,g_{kj}\vec{g}^k)=g_{kj}(\vec{g}_i,\vec{g}^k)=g_{kj}\delta_i^k=g_{ij}\Longrightarrow g_{ij}=(\vec{g}_i,\vec{g}_j)=g_{ji}
(gi,gj)=(gi,gkjgk)=gkj(gi,gk)=gkjδik=gij⟹gij=(gi,gj)=gji显然,
[
g
11
g
12
g
13
g
21
g
22
g
23
g
31
g
32
g
33
]
=
[
g
11
g
12
g
13
g
21
g
22
g
23
g
31
g
32
g
33
]
−
1
⟺
[
g
i
j
]
=
[
g
i
j
]
−
1
\begin{bmatrix}%%%%%%%%%%%%%%%% g^{11}&g^{12}&g^{13}\\ g^{21}&g^{22}&g^{23}\\ g^{31}&g^{32}&g^{33} \end{bmatrix}= \begin{bmatrix}%%%%%%%%%%%%%%%% g_{11}&g_{12}&g_{13}\\ g_{21}&g_{22}&g_{23}\\ g_{31}&g_{32}&g_{33} \end{bmatrix}^{-1}\Longleftrightarrow [g^{ij}]=[g_{ij}]^{-1}
⎣
⎡g11g21g31g12g22g32g13g23g33⎦
⎤=⎣
⎡g11g21g31g12g22g32g13g23g33⎦
⎤−1⟺[gij]=[gij]−1由该方法求解逆变基矢时步骤是分析的逆过程,即:
(1) 由协变基矢求解度量张量的协变分量
g
i
j
g_{ij}
gij;
(2) 根据可逆关系由度量张量的协变分量求得度量张量的逆变分量
g
i
j
g^{ij}
gij;
(3) 由基矢量的指标升降关系
g
⃗
j
=
g
i
j
g
⃗
i
\vec{g}^j=g^{ij}\vec{g}_i
gj=gijgi 求得逆变基矢。
对于协变基矢与逆变基矢构成的坐标架我们有如下结论:若 { g ⃗ 1 , g ⃗ 2 , g ⃗ 3 } \{\vec{g}_1,\vec{g}_2,\vec{g}_3\} {g1,g2,g3}构成右(左)手坐标系,则 { g ⃗ 1 , g ⃗ 2 , g ⃗ 3 } \{\vec{g}^1,\vec{g}^2,\vec{g}^3\} {g1,g2,g3}仍然构成右(左)手坐标系。 证明过程如下: d e t ( [ δ j i ] ) = ∣ δ 1 1 δ 2 1 δ 3 1 δ 1 2 δ 2 2 δ 3 2 δ 1 3 δ 2 3 δ 3 3 ∣ = ∣ ( g ⃗ 1 , g ⃗ 1 ) ( g ⃗ 1 , g ⃗ 2 ) ( g ⃗ 1 , g ⃗ 3 ) ( g ⃗ 2 , g ⃗ 1 ) ( g ⃗ 2 , g ⃗ 2 ) ( g ⃗ 2 , g ⃗ 3 ) ( g ⃗ 3 , g ⃗ 1 ) ( g ⃗ 3 , g ⃗ 2 ) ( g ⃗ 3 , g ⃗ 3 ) ∣ = [ g ⃗ 1 ∙ ( g ⃗ 2 × g ⃗ 3 ) ] [ g ⃗ 1 ∙ ( g ⃗ 2 × g ⃗ 3 ) ] = g [ g ⃗ 1 ∙ ( g ⃗ 2 × g ⃗ 3 ) ] = 1 det([\delta^i_j]) =\begin{vmatrix}%%%%% \delta^1_1&\delta^1_2&\delta^1_3\\ \\ \delta^2_1&\delta^2_2&\delta^2_3\\ \\ \delta^3_1&\delta^3_2&\delta^3_3\\ \end{vmatrix} =\begin{vmatrix}%%%%% (\vec{g}^1,\vec{g}_1)&(\vec{g}^1,\vec{g}_2)&(\vec{g}^1,\vec{g}_3)\\ \\ (\vec{g}^2,\vec{g}_1)&(\vec{g}^2,\vec{g}_2)&(\vec{g}^2,\vec{g}_3)\\ \\ (\vec{g}^3,\vec{g}_1)&(\vec{g}^3,\vec{g}_2)&(\vec{g}^3,\vec{g}_3)\\ \end{vmatrix} =[\vec{g}^1\bullet(\vec{g}^2\times\vec{g}^3)][\vec{g}_1\bullet(\vec{g}_2\times\vec{g}_3)]%%%%% =\sqrt{g}\ [\vec{g}^1\bullet(\vec{g}^2\times\vec{g}^3)]=1 det([δji])=∣ ∣δ11δ12δ13δ21δ22δ23δ31δ32δ33∣ ∣=∣ ∣(g1,g1)(g2,g1)(g3,g1)(g1,g2)(g2,g2)(g3,g2)(g1,g3)(g2,g3)(g3,g3)∣ ∣=[g1∙(g2×g3)][g1∙(g2×g3)]=g [g1∙(g2×g3)]=1则, g ⃗ 1 ∙ ( g ⃗ 2 × g ⃗ 3 ) = 1 g \vec{g}^1\bullet(\vec{g}^2\times\vec{g}^3)=\frac{1}{\sqrt{g}} g1∙(g2×g3)=g1上式给出了逆变基矢的混合积计算公式且说明它与协变基矢的混合积同号。(证毕)
借助上述逆变基矢混合积公式与对偶关系同样可获得与方法二类似的由逆变基矢求协变基矢的公式:
g
⃗
1
=
g
(
g
⃗
2
×
g
⃗
3
)
g
⃗
2
=
g
(
g
⃗
3
×
g
⃗
1
)
g
⃗
3
=
g
(
g
⃗
1
×
g
⃗
2
)
\vec{g}_1=\sqrt{g}\ (\vec{g}^2\times\vec{g}^3)\\ \ \\ \vec{g}_2=\sqrt{g}\ (\vec{g}^3\times\vec{g}^1)\\ \ \\ \vec{g}_3=\sqrt{g}\ (\vec{g}^1\times\vec{g}^2)
g1=g (g2×g3) g2=g (g3×g1) g3=g (g1×g2)最后指出,根据度量协(逆)变分量与基矢量的关系式可得到如下关系式:
{
d
e
t
(
[
g
i
j
]
)
=
1
g
d
e
t
(
[
g
i
j
]
)
=
g
\begin{cases}det([g^{ij}])=\frac{1}{g}\\ \\ det([g_{ij}])=g\end{cases}
⎩
⎨
⎧det([gij])=g1det([gij])=g
{
g
11
=
(
∂
x
∂
x
1
)
2
+
(
∂
y
∂
x
1
)
2
+
(
∂
z
∂
x
1
)
2
g
22
=
(
∂
x
∂
x
2
)
2
+
(
∂
y
∂
x
2
)
2
+
(
∂
z
∂
x
2
)
2
g
33
=
(
∂
x
∂
x
3
)
2
+
(
∂
y
∂
x
3
)
2
+
(
∂
z
∂
x
3
)
2
g
12
=
g
21
=
∂
x
∂
x
1
∂
x
∂
x
2
+
∂
y
∂
x
1
∂
y
∂
x
2
+
∂
z
∂
x
1
∂
z
∂
x
2
g
13
=
g
31
=
∂
x
∂
x
1
∂
x
∂
x
3
+
∂
y
∂
x
1
∂
y
∂
x
3
+
∂
z
∂
x
1
∂
z
∂
x
3
g
23
=
g
32
=
∂
x
∂
x
2
∂
x
∂
x
3
+
∂
y
∂
x
2
∂
y
∂
x
3
+
∂
z
∂
x
2
∂
z
∂
x
3
{
g
11
=
(
∂
x
1
∂
x
)
2
+
(
∂
x
1
∂
y
)
2
+
(
∂
x
1
∂
z
)
2
g
22
=
(
∂
x
2
∂
x
)
2
+
(
∂
x
2
∂
y
)
2
+
(
∂
x
2
∂
z
)
2
g
33
=
(
∂
x
3
∂
x
)
2
+
(
∂
x
3
∂
y
)
2
+
(
∂
x
3
∂
z
)
2
g
12
=
g
21
=
∂
x
1
∂
x
∂
x
2
∂
x
+
∂
x
1
∂
y
∂
x
2
∂
y
+
∂
x
1
∂
z
∂
x
2
∂
z
g
13
=
g
31
=
∂
x
1
∂
x
∂
x
3
∂
x
+
∂
x
1
∂
y
∂
x
3
∂
y
+
∂
x
1
∂
z
∂
x
3
∂
z
g
23
=
g
32
=
∂
x
2
∂
x
∂
x
3
∂
x
+
∂
x
2
∂
y
∂
x
3
∂
y
+
∂
x
2
∂
z
∂
x
3
∂
z
\begin{cases} %%%%%%%%%%%%% g_{11}=\left(\dfrac{\partial x}{\partial x_1}\right)^2+\left(\dfrac{\partial y}{\partial x_1}\right)^2+\left(\dfrac{\partial z}{\partial x_1}\right)^2\\ \\ g_{22}=\left(\dfrac{\partial x}{\partial x_2}\right)^2+\left(\dfrac{\partial y}{\partial x_2}\right)^2+\left(\dfrac{\partial z}{\partial x_2}\right)^2\\ \\ g_{33}=\left(\dfrac{\partial x}{\partial x_3}\right)^2+\left(\dfrac{\partial y}{\partial x_3}\right)^2+\left(\dfrac{\partial z}{\partial x_3}\right)^2\\ \\ g_{12}=g_{21}=\dfrac{\partial x}{\partial x_1}\dfrac{\partial x}{\partial x_2}+\dfrac{\partial y}{\partial x_1}\dfrac{\partial y}{\partial x_2}+\dfrac{\partial z}{\partial x_1}\dfrac{\partial z}{\partial x_2}\\ \\ g_{13}=g_{31}=\dfrac{\partial x}{\partial x_1}\dfrac{\partial x}{\partial x_3}+\dfrac{\partial y}{\partial x_1}\dfrac{\partial y}{\partial x_3}+\dfrac{\partial z}{\partial x_1}\dfrac{\partial z}{\partial x_3}\\ \\ g_{23}=g_{32}=\dfrac{\partial x}{\partial x_2}\dfrac{\partial x}{\partial x_3}+\dfrac{\partial y}{\partial x_2}\dfrac{\partial y}{\partial x_3}+\dfrac{\partial z}{\partial x_2}\dfrac{\partial z}{\partial x_3} \end{cases} \qquad \begin{cases} %%%%%%%%%%%%%%%% g^{11}=\left(\dfrac{\partial x_1}{\partial x}\right)^2+\left(\dfrac{\partial x_1}{\partial y}\right)^2+\left(\dfrac{\partial x_1}{\partial z}\right)^2\\ \\ g^{22}=\left(\dfrac{\partial x_2}{\partial x}\right)^2+\left(\dfrac{\partial x_2}{\partial y}\right)^2+\left(\dfrac{\partial x_2}{\partial z}\right)^2\\ \\ g^{33}=\left(\dfrac{\partial x_3}{\partial x}\right)^2+\left(\dfrac{\partial x_3}{\partial y}\right)^2+\left(\dfrac{\partial x_3}{\partial z}\right)^2\\ \\ g^{12}=g^{21}=\dfrac{\partial x_1}{\partial x}\dfrac{\partial x_2}{\partial x}+\dfrac{\partial x_1}{\partial y}\dfrac{\partial x_2}{\partial y}+\dfrac{\partial x_1}{\partial z}\dfrac{\partial x_2}{\partial z}\\ \\ g^{13}=g^{31}=\dfrac{\partial x_1}{\partial x}\dfrac{\partial x_3}{\partial x}+\dfrac{\partial x_1}{\partial y}\dfrac{\partial x_3}{\partial y}+\dfrac{\partial x_1}{\partial z}\dfrac{\partial x_3}{\partial z}\\ \\ g^{23}=g^{32}=\dfrac{\partial x_2}{\partial x}\dfrac{\partial x_3}{\partial x}+\dfrac{\partial x_2}{\partial y}\dfrac{\partial x_3}{\partial y}+\dfrac{\partial x_2}{\partial z}\dfrac{\partial x_3}{\partial z} \end{cases}
⎩
⎨
⎧g11=(∂x1∂x)2+(∂x1∂y)2+(∂x1∂z)2g22=(∂x2∂x)2+(∂x2∂y)2+(∂x2∂z)2g33=(∂x3∂x)2+(∂x3∂y)2+(∂x3∂z)2g12=g21=∂x1∂x∂x2∂x+∂x1∂y∂x2∂y+∂x1∂z∂x2∂zg13=g31=∂x1∂x∂x3∂x+∂x1∂y∂x3∂y+∂x1∂z∂x3∂zg23=g32=∂x2∂x∂x3∂x+∂x2∂y∂x3∂y+∂x2∂z∂x3∂z⎩
⎨
⎧g11=(∂x∂x1)2+(∂y∂x1)2+(∂z∂x1)2g22=(∂x∂x2)2+(∂y∂x2)2+(∂z∂x2)2g33=(∂x∂x3)2+(∂y∂x3)2+(∂z∂x3)2g12=g21=∂x∂x1∂x∂x2+∂y∂x1∂y∂x2+∂z∂x1∂z∂x2g13=g31=∂x∂x1∂x∂x3+∂y∂x1∂y∂x3+∂z∂x1∂z∂x3g23=g32=∂x∂x2∂x∂x3+∂y∂x2∂y∂x3+∂z∂x2∂z∂x3
说明:在笛卡尔直角坐标系中协变基矢与逆变基矢完全重合,即
e
⃗
i
=
g
⃗
i
=
g
⃗
i
(
i
=
1
,
2
,
3
)
\vec{e}_i=\vec{g}_i=\vec{g}^i\ (i=1,2,3)
ei=gi=gi (i=1,2,3)