(六)度量张量与置换张量

1. 度量张量

1.1 度量张量协(逆)变分量的坐标转换关系

由度量张量协(逆)变分量的定义及基矢量的坐标变换关系可得到如下的度量张量协(逆)变分量的坐标转换关系 g i ′ j ′ = ( g ⃗ i ′ , g ⃗ j ′ ) = ( β m i ′ g ⃗ m , β n j ′ g ⃗ n ) = β m i ′ β n j ′ ( g ⃗ m , g ⃗ n ) = β m i ′ β n j ′ g m n   g i ′ j ′ = ( g ⃗ i ′ , g ⃗ j ′ ) = ( β i ′ m g ⃗ m , β j ′ n g ⃗ n ) = β i ′ m β j ′ n ( g ⃗ m , g ⃗ n ) = β i ′ m β j ′ n g m n   g i j = ( g ⃗ i , g ⃗ j ) = ( β m ′ i g ⃗ m ′ , β n ′ j g ⃗ n ′ ) = β m ′ i β n ′ j ( g ⃗ m ′ , g ⃗ n ′ ) = β m ′ i β n ′ j g m ′ n ′   g i j = ( g ⃗ i , g ⃗ j ) = ( β i m ′ g ⃗ m ′ , β j n ′ g ⃗ n ′ ) = β i m ′ β j n ′ ( g ⃗ m ′ , g ⃗ n ′ ) = β i m ′ β j n ′ g m ′ n ′ g^{i'j'} =(\vec{g}^{i'},\vec{g}^{j'}) =(\beta_{m}^{i'}\vec{g}^{m},\beta_{n}^{j'}\vec{g}^{n}) =\beta_{m}^{i'}\beta_{n}^{j'}(\vec{g}^{m},\vec{g}^{n}) =\beta_{m}^{i'}\beta_{n}^{j'}g^{mn} \\\ \\g_{i'j'} =(\vec{g}_{i'},\vec{g}_{j'}) =(\beta^{m}_{i'}\vec{g}_{m},\beta^{n}_{j'}\vec{g}_{n}) =\beta^{m}_{i'}\beta^{n}_{j'}(\vec{g}_{m},\vec{g}_{n}) =\beta^{m}_{i'}\beta^{n}_{j'}g_{mn} \\\ \\g^{ij} =(\vec{g}^{i},\vec{g}^{j}) =(\beta_{m'}^{i}\vec{g}^{m'},\beta_{n'}^{j}\vec{g}^{n'}) =\beta_{m'}^{i}\beta_{n'}^{j}(\vec{g}^{m'},\vec{g}^{n'}) =\beta_{m'}^{i}\beta_{n'}^{j}g^{m'n'} \\\ \\ g_{ij} =(\vec{g}_{i},\vec{g}_{j}) =(\beta^{m'}_{i}\vec{g}_{m'},\beta^{n'}_{j}\vec{g}_{n'}) =\beta^{m'}_{i}\beta^{n'}_{j}(\vec{g}_{m'},\vec{g}_{n'}) =\beta^{m'}_{i}\beta^{n'}_{j}g_{m'n'} gij=(g i,g j)=(βmig m,βnjg n)=βmiβnj(g m,g n)=βmiβnjgmn gij=(g i,g j)=(βimg m,βjng n)=βimβjn(g m,g n)=βimβjngmn gij=(g i,g j)=(βmig m,βnjg n)=βmiβnj(g m,g n)=βmiβnjgmn gij=(g i,g j)=(βimg m,βjng n)=βimβjn(g m,g n)=βimβjngmn

1.2 度量张量

显然,度量张量的协变分量或逆变分量满足张量分量的坐标转换关系,因而该有序数组的确是一个张量,一般称作度量张量 G \bold G G。根据张量分量的指标升降关系与度量张量协变分量、逆变分量的互逆关系得知度量张量的混变分量 g i ∙ j = g k j g i k = g i k g k j = δ i j = δ j i   g ∙ j i = g i k g k j = g k j g i k = δ j i g^{\bullet j}_i=g^{kj}g_{ik}=g_{ik}g^{kj}=\delta^{j}_{i}=\delta^{i}_{j}\\\ \\g_{\bullet j}^i=g^{ik}g_{kj}=g_{kj}g^{ik}=\delta^{i}_{j} gij=gkjgik=gikgkj=δij=δji gji=gikgkj=gkjgik=δji那么度量张量的实体记法可写作: G = g i j g ⃗ i g ⃗ j = g i j g ⃗ i g ⃗ j = δ j i g ⃗ i g ⃗ j = g ⃗ i g ⃗ i = δ j i g ⃗ i g ⃗ j = g ⃗ i g ⃗ i \bold G=g^{ij}\vec{g}_i\vec{g}_j=g_{ij}\vec{g}^i\vec{g}^j=\delta^{i}_j\vec{g}_i\vec{g}^j=\vec{g}_i\vec{g}^i=\delta^{i}_j\vec{g}^i\vec{g}_j=\vec{g}^i\vec{g}_i G=gijg ig j=gijg ig j=δjig ig j=g ig i=δjig ig j=g ig i

2. 置换张量

2.1 置换符号

定义如下三指标的符号为置换符号/Ricci符号 e i j k = e i j k = { 1 ( i , j , k 为顺序排列: 123 、 231 、 312 ) − 1 ( i , j , k 为逆序排列: 132 、 213 、 321 ) 0 ( i , j , k 为非序排列) e^{ijk}=e_{ijk}= \begin{cases} 1&\quad(i,j,k为顺序排列:123、231、312)\\ -1&\quad(i,j,k为逆序排列:132、213、321)\\ 0&\quad(i,j,k为非序排列) \end{cases} eijk=eijk= 110(i,j,k为顺序排列:123231312)(i,j,k为逆序排列:132213321)(i,j,k为非序排列)排列
根据置换符号的定义,知道置换符号具有反对称性,即:
e i j k = − e i k j = − e k j i = − e j i k   e i j k = − e i k j = − e k j i = − e j i k e^{ijk}=-e^{ikj}=-e^{kji}=-e^{jik}\\ \ \\ e_{ijk}=-e_{ikj}=-e_{kji}=-e_{jik} eijk=eikj=ekji=ejik eijk=eikj=ekji=ejik

2.2 行列式的展开式

行列式的展开式可借助置换符号进行简单地表示,如下:(注:上/前指标表示行编号,下/后指标为列编号)
d e t ( a m ∙ n ) = ∣ a 1 ∙ 1 a 2 ∙ 1 a 3 ∙ 1 a 1 ∙ 2 a 2 ∙ 2 a 3 ∙ 2 a 1 ∙ 3 a 2 ∙ 3 a 3 ∙ 3 ∣ = a 1 ∙ 1 a 2 ∙ 2 a 3 ∙ 3 + a 1 ∙ 2 a 2 ∙ 3 a 3 ∙ 1 + a 1 ∙ 3 a 2 ∙ 1 a 3 ∙ 2 − a 1 ∙ 1 a 2 ∙ 3 a 3 ∙ 2 − a 1 ∙ 2 a 2 ∙ 1 a 3 ∙ 3 − a 1 ∙ 3 a 2 ∙ 2 a 3 ∙ 1 = a 1 ∙ i a 2 ∙ j a 3 ∙ k e i j k = a i ∙ 1 a j ∙ 2 a k ∙ 3 e i j k   d e t ( a ∙ n m ) = ∣ a ∙ 1 1 a ∙ 2 1 a ∙ 3 1 a ∙ 1 2 a ∙ 2 2 a ∙ 3 2 a ∙ 1 3 a ∙ 2 3 a ∙ 3 3 ∣ = a ∙ 1 1 a ∙ 2 2 a ∙ 3 3 + a ∙ 1 2 a ∙ 2 3 a ∙ 3 1 + a ∙ 1 3 a ∙ 2 1 a ∙ 3 2 − a ∙ 1 1 a ∙ 2 3 a ∙ 3 2 − a ∙ 1 2 a ∙ 2 1 a ∙ 3 3 − a ∙ 1 3 a ∙ 2 2 a ∙ 3 1 = a ∙ 1 i a ∙ 2 j a ∙ 3 k e i j k = a ∙ i 1 a ∙ j 2 a ∙ k 3 e i j k   d e t ( a m n ) = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 13 a 21 a 32 + a 12 a 23 a 31 − a 11 a 23 a 32 − a 13 a 22 a 31 − a 12 a 21 a 33 = a 1 i a 2 j a 3 k e i j k = a i 1 a j 2 a k 3 e i j k   d e t ( a m n ) = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 13 a 21 a 32 + a 12 a 23 a 31 − a 11 a 23 a 32 − a 13 a 22 a 31 − a 12 a 21 a 33 = a 1 i a 2 j a 3 k e i j k = a i 1 a j 2 a k 3 e i j k det(a^{\bullet n}_m)= \begin{vmatrix} a^{\bullet 1}_1&a^{\bullet 1}_2&a^{\bullet 1}_3\\ \\ a^{\bullet 2}_1&a^{\bullet 2}_2&a^{\bullet 2}_3\\ \\ a^{\bullet 3}_1&a^{\bullet 3}_2&a^{\bullet 3}_3\\ \end{vmatrix} = a^{\bullet 1}_1a^{\bullet 2}_2a^{\bullet 3}_3+a^{\bullet 2}_1a^{\bullet 3}_2a^{\bullet 1}_3+a^{\bullet 3}_1a^{\bullet 1}_2a^{\bullet 2}_3-a^{\bullet 1}_1a^{\bullet 3}_2a^{\bullet 2}_3-a^{\bullet 2}_1a^{\bullet 1}_2a^{\bullet 3}_3-a^{\bullet 3}_1a^{\bullet 2}_2a^{\bullet 1}_3 =a_1^{\bullet i}a_2^{\bullet j}a_3^{\bullet k}e_{ijk} =a_i^{\bullet 1}a_j^{\bullet 2}a_k^{\bullet 3}e^{ijk}\\\ \\ %%%%%%%%%%%%%%%%%%%%%%%%% det(a_{\bullet n}^m)= \begin{vmatrix} a_{\bullet 1}^1&a_{\bullet 2}^1&a_{\bullet 3}^1\\ \\ a_{\bullet 1}^2&a_{\bullet 2}^2&a_{\bullet 3}^2\\ \\ a_{\bullet 1}^3&a_{\bullet 2}^3&a_{\bullet 3}^3\\ \end{vmatrix} = a_{\bullet 1}^1a_{\bullet 2}^2a_{\bullet 3}^3+a_{\bullet 1}^2a_{\bullet 2}^3a_{\bullet 3}^1+a_{\bullet 1}^3a_{\bullet 2}^1a_{\bullet 3}^2-a_{\bullet 1}^1a_{\bullet 2}^3a_{\bullet 3}^2-a_{\bullet 1}^2a_{\bullet 2}^1a_{\bullet 3}^3-a_{\bullet 1}^3a_{\bullet 2}^2a_{\bullet 3}^1 =a_{\bullet 1}^ia_{\bullet 2}^ja_{\bullet 3}^ke_{ijk} =a_{\bullet i}^1a_{\bullet j}^2a_{\bullet k}^3e^{ijk}\\\ \\ %%%%%%%%%%%%%%%%%%%%%%% det(a_{mn})= \begin{vmatrix} a_{11}&a_{12}&a_{13}\\ \\ a_{21}&a_{22}&a_{23}\\ \\ a_{31}&a_{32}&a_{33}\\ \end{vmatrix} =a_{11}a_{22}a_{33}+a_{13}a_{21}a_{32}+a_{12}a_{23}a_{31}-a_{11}a_{23}a_{32}-a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33} =a_{1i}a_{2j}a_{3k}e^{ijk} =a_{i1}a_{j2}a_{k3}e^{ijk}\\\ \\ %%%%%%%%%%%%%%%%%%%%%%% det(a^{mn})= \begin{vmatrix} a^{11}&a^{12}&a^{13}\\ \\ a^{21}&a^{22}&a^{23}\\ \\ a^{31}&a^{32}&a^{33}\\ \end{vmatrix} =a^{11}a^{22}a^{33}+a^{13}a^{21}a^{32}+a^{12}a^{23}a^{31}-a^{11}a^{23}a^{32}-a^{13}a^{22}a^{31}-a^{12}a^{21}a^{33} =a^{1i}a^{2j}a^{3k}e_{ijk} =a^{i1}a^{j2}a^{k3}e_{ijk} det(amn)= a11a12a13a21a22a23a31a32a33 =a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31=a1ia2ja3keijk=ai1aj2ak3eijk det(anm)= a11a12a13a21a22a23a31a32a33 =a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31=a1ia2ja3keijk=ai1aj2ak3eijk det(amn)= a11a21a31a12a22a32a13a23a33 =a11a22a33+a13a21a32+a12a23a31a11a23a32a13a22a31a12a21a33=a1ia2ja3keijk=ai1aj2ak3eijk det(amn)= a11a21a31a12a22a32a13a23a33 =a11a22a33+a13a21a32+a12a23a31a11a23a32a13a22a31a12a21a33=a1ia2ja3keijk=ai1aj2ak3eijk可根据互换两行(列)次序则行列式变号的性质得到如下关系:
(1)任意更换行列式两行:
∣ a 1 ∙ p a 2 ∙ p a 3 ∙ p a 1 ∙ q a 2 ∙ q a 3 ∙ q a 1 ∙ l a 2 ∙ l a 3 ∙ l ∣ = a i ∙ p a j ∙ q a k ∙ l e i j k = a i ∙ 1 a j ∙ 2 a k ∙ 3 e i j k e p q l = d e t ( a m ∙ n ) e p q l   ∣ a ∙ 1 p a ∙ 2 p a ∙ 3 p a ∙ 1 q a ∙ 2 q a ∙ 3 q a ∙ 1 l a ∙ 2 l a ∙ 3 l ∣ = a ∙ i p a ∙ j q a ∙ k l e i j k = a ∙ i 1 a ∙ j 2 a ∙ k 3 e i j k e p q l = d e t ( a ∙ n m ) e p q l   ∣ a p 1 a p 2 a p 3 a q 1 a q 2 a q 3 a l 1 a l 2 a l 3 ∣ = a p i a q j a l k e i j k = a 1 i a 2 j a 3 k e i j k e p q l = d e t ( a m n ) e p q l   ∣ a p 1 a p 2 a p 3 a q 1 a q 2 a q 3 a l 1 a l 2 a l 3 ∣ = a p i a q j a l k e i j k = a 1 i a 2 j a 3 k e i j k e p q l = d e t ( a m n ) e p q l \begin{vmatrix} a^{\bullet p}_1&a^{\bullet p}_2&a^{\bullet p}_3\\ \\ a^{\bullet q}_1&a^{\bullet q}_2&a^{\bullet q}_3\\ \\ a^{\bullet l}_1&a^{\bullet l}_2&a^{\bullet l}_3 \end{vmatrix} =a_i^{\bullet p}a_j^{\bullet q}a_k^{\bullet l}e^{ijk} =a_i^{\bullet 1}a_j^{\bullet 2}a_k^{\bullet 3}e^{ijk}e^{pql} =det(a_m^{\bullet n})e^{pql}\\\ \\ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{vmatrix} a_{\bullet 1}^p&a_{\bullet 2}^p&a_{\bullet 3}^p\\ \\ a_{\bullet 1}^q&a_{\bullet 2}^q&a_{\bullet 3}^q\\ \\ a_{\bullet 1}^l&a_{\bullet 2}^l&a_{\bullet 3}^l\\ \end{vmatrix} =a_{\bullet i}^pa_{\bullet j}^qa_{\bullet k}^le^{ijk} =a_{\bullet i}^1a_{\bullet j}^2a_{\bullet k}^3e^{ijk}e^{pql} =det(a_{\bullet n}^m)e^{pql}\\\ \\ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{vmatrix} a_{p1}&a_{p2}&a_{p3}\\ \\ a_{q1}&a_{q2}&a_{q3}\\ \\ a_{l1}&a_{l2}&a_{l3}\\ \end{vmatrix} =a_{pi}a_{qj}a_{lk}e^{ijk} =a_{1i}a_{2j}a_{3k}e^{ijk}e_{pql} =det(a_{mn})e_{pql}\\\ \\ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{vmatrix} a^{p1}&a^{p2}&a^{p3}\\ \\ a^{q1}&a^{q2}&a^{q3}\\ \\ a^{l1}&a^{l2}&a^{l3}\\ \end{vmatrix} =a^{pi}a^{qj}a^{lk}e_{ijk} =a^{1i}a^{2j}a^{3k}e_{ijk}e^{pql} =det(a^{mn})e^{pql} a1pa1qa1la2pa2qa2la3pa3qa3l =aipajqakleijk=ai1aj2ak3eijkepql=det(amn)epql  a1pa1qa1la2pa2qa2la3pa3qa3l =aipajqakleijk=ai1aj2ak3eijkepql=det(anm)epql  ap1aq1al1ap2aq2al2ap3aq3al3 =apiaqjalkeijk=a1ia2ja3keijkepql=det(amn)epql  ap1aq1al1ap2aq2al2ap3aq3al3 =apiaqjalkeijk=a1ia2ja3keijkepql=det(amn)epql(2)任意更换行列式两列:
∣ a p ∙ 1 a q ∙ 1 a l ∙ 1 a p ∙ 2 a q ∙ 2 a l ∙ 2 a p ∙ 3 a q ∙ 3 a l ∙ 3 ∣ = a p ∙ i a q ∙ j a l ∙ k e i j k = a 1 ∙ i a 2 ∙ j a 3 ∙ k e i j k e p q l = d e t ( a m ∙ n ) e p q l   ∣ a ∙ p 1 a ∙ q 1 a ∙ l 1 a ∙ p 2 a ∙ q 2 a ∙ l 2 a ∙ p 3 a ∙ q 3 a ∙ l 3 ∣ = a ∙ p i a ∙ q j a ∙ l k e i j k = a ∙ 1 i a ∙ 2 j a ∙ 3 k e i j k e p q l = d e t ( a ∙ n m ) e p q l   ∣ a 1 p a 1 q a 1 l a 2 p a 2 q a 2 l a 3 p a 3 q a 3 l ∣ = a i p a j q a k l e i j k = a i 1 a j 2 a k 3 e i j k e p q l = d e t ( a m n ) e p q l   ∣ a 1 p a 1 q a 1 l a 2 p a 2 q a 2 l a 3 p a 3 q a 3 l ∣ = a i p a j q a k l e i j k = a i 1 a j 2 a k 3 e i j k e p q l = d e t ( a m n ) e p q l \begin{vmatrix} a^{\bullet 1}_p&a^{\bullet 1}_q&a^{\bullet 1}_l\\ \\ a^{\bullet 2}_p&a^{\bullet 2}_q&a^{\bullet 2}_l\\ \\ a^{\bullet 3}_p&a^{\bullet 3}_q&a^{\bullet3}_l \end{vmatrix} =a_p^{\bullet i}a_q^{\bullet j}a_l^{\bullet k}e_{ijk} =a_1^{\bullet i}a_2^{\bullet j}a_3^{\bullet k}e_{ijk}e_{pql} =det(a_m^{\bullet n})e_{pql}\\\ \\ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{vmatrix} a_{\bullet p}^1&a_{\bullet q}^1&a_{\bullet l}^1\\ \\ a_{\bullet p}^2&a_{\bullet q}^2&a_{\bullet l}^2\\ \\ a_{\bullet p}^3&a_{\bullet q}^3&a_{\bullet l}^3 \end{vmatrix} =a_{\bullet p}^ia_{\bullet q}^ja_{\bullet l}^ke_{ijk} =a_{\bullet 1}^ia_{\bullet 2}^ja_{\bullet 3}^ke_{ijk}e_{pql} =det(a_{\bullet n}^m)e_{pql}\\\ \\ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{vmatrix} a_{1p}&a_{1q}&a_{1l}\\ \\ a_{2p}&a_{2q}&a_{2l}\\ \\ a_{3p}&a_{3q}&a_{3l}\\ \end{vmatrix} =a_{ip}a_{jq}a_{kl}e^{ijk} =a_{i1}a_{j2}a_{k3}e^{ijk}e_{pql} =det(a_{mn})e_{pql}\\\ \\ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{vmatrix} a^{1p}&a^{1q}&a^{1l}\\ \\ a^{2p}&a^{2q}&a^{2l}\\ \\ a^{3p}&a^{3q}&a^{3l}\\ \end{vmatrix} =a^{ip}a^{jq}a^{kl}e_{ijk} =a^{i1}a^{j2}a^{k3}e_{ijk}e^{pql} =det(a^{mn})e^{pql} ap1ap2ap3aq1aq2aq3al1al2al3 =apiaqjalkeijk=a1ia2ja3keijkepql=det(amn)epql  ap1ap2ap3aq1aq2aq3al1al2al3 =apiaqjalkeijk=a1ia2ja3keijkepql=det(anm)epql  a1pa2pa3pa1qa2qa3qa1la2la3l =aipajqakleijk=ai1aj2ak3eijkepql=det(amn)epql  a1pa2pa3pa1qa2qa3qa1la2la3l =aipajqakleijk=ai1aj2ak3eijkepql=det(amn)epql(3)任意同时更换行列式两行两列:
∣ a p ∙ i a q ∙ i a l ∙ i a p ∙ j a q ∙ j a l ∙ j a p ∙ k a q ∙ k a l ∙ k ∣ = d e t ( a m ∙ n ) e i j k e p q l   ∣ a ∙ p i a ∙ q i a ∙ l i a ∙ p j a ∙ q j a ∙ l j a ∙ p k a ∙ q k a ∙ l k ∣ = d e t ( a ∙ n m ) e i j k e p q l   ∣ a i p a i q a i l a j p a j q a j l a k p a k q a k l ∣ = d e t ( a m n ) e i j k e p q l   ∣ a i p a i q a i l a j p a j q a j l a k p a k q a k l ∣ = d e t ( a m n ) e i j k e p q l \begin{vmatrix} a^{\bullet i}_p&a^{\bullet i}_q&a^{\bullet i}_l\\ \\ a^{\bullet j}_p&a^{\bullet j}_q&a^{\bullet j}_l\\ \\ a^{\bullet k}_p&a^{\bullet k}_q&a^{\bullet k}_l\\ \end{vmatrix}= det(a^{\bullet n}_m)e^{ijk}e_{pql}\\\ \\%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{vmatrix} a_{\bullet p}^i&a_{\bullet q}^i&a_{\bullet l}^i\\ \\ a_{\bullet p}^j&a_{\bullet q}^j&a_{\bullet l}^j\\ \\ a_{\bullet p}^k&a_{\bullet q}^k&a_{\bullet l}^k \end{vmatrix} =det(a_{\bullet n}^m)e^{ijk}e_{pql}\\\ \\%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{vmatrix} a_{ip}&a_{iq}&a_{il}\\ \\ a_{jp}&a_{jq}&a_{jl}\\ \\ a_{kp}&a_{kq}&a_{kl}\\ \end{vmatrix} =det(a_{mn})e_{ijk}e_{pql} \\\ \\ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{vmatrix} a^{ip}&a^{iq}&a^{il}\\ \\ a^{jp}&a^{jq}&a^{jl}\\ \\ a^{kp}&a^{kq}&a^{kl}\\ \end{vmatrix} =det(a^{mn})e^{ijk}e^{pql} apiapjapkaqiaqjaqkalialjalk =det(amn)eijkepql  apiapjapkaqiaqjaqkalialjalk =det(anm)eijkepql  aipajpakpaiqajqakqailajlakl =det(amn)eijkepql  aipajpakpaiqajqakqailajlakl =det(amn)eijkepql

2.3 置换张量

借助置换符号次序任意排列的基矢量混合积为:
ϵ i j k = g ⃗ i ∙ ( g ⃗ j × g ⃗ k ) = g e i j k   ϵ i j k = g ⃗ i ∙ ( g ⃗ j × g ⃗ k ) = 1 g e i j k \epsilon_{ijk}=\vec{g}_i\bullet(\vec{g}_j\times\vec{g}_k)=\sqrt{g}e_{ijk}\\\ \\ \epsilon^{ijk}=\vec{g}^i\bullet(\vec{g}^j\times\vec{g}^k)=\frac{1}{\sqrt{g}}e^{ijk} ϵijk=g i(g j×g k)=g eijk ϵijk=g i(g j×g k)=g 1eijk由于
ϵ i ′ j ′ k ′ = g ⃗ i ′ ∙ ( g ⃗ j ′ × g ⃗ k ′ ) = β i ′ p g ⃗ p ∙ ( β j ′ q g ⃗ q × β k ′ l g ⃗ l ) = β i ′ p β j ′ q β k ′ l [ g ⃗ p ∙ ( g ⃗ q × g ⃗ l ) ] = β i ′ p β j ′ q β k ′ l ϵ p q l   ϵ i ′ j ′ k ′ = g ⃗ i ′ ∙ ( g ⃗ j ′ × g ⃗ k ′ ) = β p i ′ g ⃗ p ∙ ( β q j ′ g ⃗ q × β l k ′ g ⃗ l ) = β p i ′ β q j ′ β l k ′ [ g ⃗ p ∙ ( g ⃗ q × g ⃗ l ) ] = β p i ′ β q j ′ β l k ′ ϵ p q l \epsilon_{i'j'k'} =\vec{g}_{i'}\bullet(\vec{g}_{j'}\times\vec{g}_{k'}) =\beta_{i'}^p\vec{g}_p\bullet(\beta_{j'}^q\vec{g}_{q}\times\beta_{k'}^l\vec{g}_{l}) =\beta_{i'}^p\beta_{j'}^q\beta_{k'}^l[\vec{g}_{p}\bullet(\vec{g}_{q}\times\vec{g}_{l})] =\beta_{i'}^p\beta_{j'}^q\beta_{k'}^l\epsilon_{pql}\\\ \\ \epsilon^{i'j'k'} =\vec{g}^{i'}\bullet(\vec{g}^{j'}\times\vec{g}^{k'}) =\beta^{i'}_p\vec{g}^p\bullet(\beta^{j'}_q\vec{g}^{q}\times\beta^{k'}_l\vec{g}^{l}) =\beta^{i'}_p\beta^{j'}_q\beta^{k'}_l[\vec{g}^{p}\bullet(\vec{g}^{q}\times\vec{g}^{l})] =\beta^{i'}_p\beta^{j'}_q\beta^{k'}_l\epsilon^{pql} ϵijk=g i(g j×g k)=βipg p(βjqg q×βklg l)=βipβjqβkl[g p(g q×g l)]=βipβjqβklϵpql ϵijk=g i(g j×g k)=βpig p(βqjg q×βlkg l)=βpiβqjβlk[g p(g q×g l)]=βpiβqjβlkϵpql ϵ i j k 、 ϵ i j k \epsilon_{ijk}、\epsilon^{ijk} ϵijkϵijk 分别为某三阶张量的协变分量、逆变分量,将之称作置换张量/Eddington张量 ϵ \epsilon ϵ。采用实体记法有:
ϵ = ϵ i j k g ⃗ i g ⃗ j g ⃗ k = ϵ i j k g ⃗ i g ⃗ j g ⃗ k = ⋯ \epsilon=\epsilon_{ijk}\vec{g}^i\vec{g}^j\vec{g}^k=\epsilon^{ijk}\vec{g}_i\vec{g}_j\vec{g}_k=\cdots ϵ=ϵijkg ig jg k=ϵijkg ig jg k=此外,需要指出如下两点:

(1)置换符号不是三阶张量;

(2) g \sqrt{g} g 1 g \frac{1}{\sqrt{g}} g 1 不是标量。

理由如下:
e i ′ j ′ k ′ ≠ β i ′ p β j ′ q β k ′ l e p q l   g ′ = g ⃗ 1 ′ ∙ ( g ⃗ 2 ′ × g ⃗ 3 ′ ) = β 1 ′ p g ⃗ p ∙ ( β 2 ′ q g ⃗ q × β 3 ′ l g ⃗ l ) = β 1 ′ p β 2 ′ q β 3 ′ l g e p q l ≠ g e_{i'j'k'} \ne\beta_{i'}^p\beta_{j'}^q\beta_{k'}^le_{pql} \\\ \\ \sqrt{g'} =\vec{g}_{1'}\bullet(\vec{g}_{2'}\times\vec{g}_{3'}) =\beta_{1'}^p\vec{g}_p\bullet(\beta_{2'}^q\vec{g}_{q}\times\beta_{3'}^l\vec{g}_{l}) =\beta_{1'}^p\beta_{2'}^q\beta_{3'}^l\sqrt{g}e_{pql} \ne\sqrt{g} eijk=βipβjqβklepql g =g 1(g 2×g 3)=β1pg p(β2qg q×β3lg l)=β1pβ2qβ3lg epql=g

2.4 基矢量的叉积

根据协变基矢、逆变基矢互相转换的关系式可知基矢量的叉积可通过其对偶基矢与置换张量来表示,即:
g ⃗ i × g ⃗ j = ( g e i j k ) g ⃗ k = ϵ i j k g ⃗ k = g ⃗ i g ⃗ j : ϵ = ϵ : g ⃗ i g ⃗ j   g ⃗ i × g ⃗ j = ( 1 g e i j k ) g ⃗ k = ϵ i j k g ⃗ k = g ⃗ i g ⃗ j : ϵ = ϵ : g ⃗ i g ⃗ j \vec{g}_i\times\vec{g}_j=(\sqrt{g}e_{ijk})\vec{g}^k=\epsilon_{ijk}\vec{g}^k=\vec{g}_i\vec{g}_j:\epsilon=\epsilon:\vec{g}_i\vec{g}_j\\\ \\ \vec{g}^i\times\vec{g}^j=(\frac{1}{\sqrt{g}}e^{ijk})\vec{g}_k=\epsilon^{ijk}\vec{g}_k=\vec{g}^i\vec{g}^j:\epsilon=\epsilon:\vec{g}^i\vec{g}^j g i×g j=(g eijk)g k=ϵijkg k=g ig j:ϵ=ϵ:g ig j g i×g j=(g 1eijk)g k=ϵijkg k=g ig j:ϵ=ϵ:g ig j

2.5 ϵ ∼ δ \epsilon \sim \delta ϵδ恒等式

∣ δ p i δ q i δ l i δ p j δ q j δ l j δ p k δ q k δ l k ∣ = d e t ( δ n m ) e i j k e p q l = e i j k e p q l = ϵ i j k ϵ p q l = δ p q l i j k = δ p i δ q j δ l k + δ l i δ p j δ q k + δ q i δ l j δ p k − δ p i δ l j δ q k − δ l i δ q j δ p k − δ q i δ p j δ l k \begin{vmatrix} \delta^{i}_p&\delta^{i}_q&\delta^{i}_l\\ \\ \delta^{j}_p&\delta^{j}_q&\delta^{j}_l\\ \\ \delta^{k}_p&\delta^{k}_q&\delta^{k}_l\\ \end{vmatrix} =det(\delta^m_n)e^{ijk}e_{pql} =e^{ijk}e_{pql} =\epsilon^{ijk}\epsilon_{pql} =\delta^{ijk}_{pql} =\delta^{i}_{p}\delta^{j}_{q}\delta^{k}_{l}+\delta^{i}_{l}\delta^{j}_{p}\delta^{k}_{q}+\delta^{i}_{q}\delta^{j}_{l}\delta^{k}_{p}-\delta^{i}_{p}\delta^{j}_{l}\delta^{k}_{q}-\delta^{i}_{l}\delta^{j}_{q}\delta^{k}_{p}-\delta^{i}_{q}\delta^{j}_{p}\delta^{k}_{l} δpiδpjδpkδqiδqjδqkδliδljδlk =det(δnm)eijkepql=eijkepql=ϵijkϵpql=δpqlijk=δpiδqjδlk+δliδpjδqk+δqiδljδpkδpiδljδqkδliδqjδpkδqiδpjδlk δ p q l i j k \delta^{ijk}_{pql} δpqlijk 称作广义Kronecker δ \delta δ,显然 广义Kronecker δ \delta δ 为六阶张量,因其满足坐标转换关系:
δ p ′ q ′ l ′ i ′ j ′ k ′ = ϵ i ′ j ′ k ′ ϵ p ′ q ′ l ′ = β a i ′ β b j ′ β c k ′ ϵ a b c β p ′ d β q ′ e β l ′ f ϵ d e f \delta^{i'j'k'}_{p'q'l'} =\epsilon^{i'j'k'}\epsilon_{p'q'l'} =\beta^{i'}_{a}\beta^{j'}_{b}\beta^{k'}_{c}\epsilon^{abc}\beta_{p'}^{d}\beta_{q'}^{e}\beta_{l'}^{f}\epsilon_{def} δpqlijk=ϵijkϵpql=βaiβbjβckϵabcβpdβqeβlfϵdef我们还可进一步得到:
e i j k e p q k = ϵ i j k ϵ p q k = δ p q k i j k = δ p q i j = δ p i δ q j − δ q i δ p j   e i j k e p j k = ϵ i j k ϵ p j k = δ p j k i j k = 2 δ p i   e i j k e i j k = ϵ i j k ϵ i j k = δ i j k i j k = 3 ! e^{ijk}e_{pqk} =\epsilon^{ijk}\epsilon_{pqk} =\delta^{ijk}_{pqk} =\delta^{ij}_{pq} =\delta^{i}_{p}\delta^{j}_{q}-\delta^{i}_{q}\delta^{j}_{p}\\\ \\ e^{ijk}e_{pjk} =\epsilon^{ijk}\epsilon_{pjk} =\delta^{ijk}_{pjk} =2\delta^{i}_{p}\\\ \\ e^{ijk}e_{ijk} =\epsilon^{ijk}\epsilon_{ijk} =\delta^{ijk}_{ijk} =3! eijkepqk=ϵijkϵpqk=δpqkijk=δpqij=δpiδqjδqiδpj eijkepjk=ϵijkϵpjk=δpjkijk=2δpi eijkeijk=ϵijkϵijk=δijkijk=3!

2.6 二维置换张量

二维空间为三维空间的子空间,可在二维的基矢 g ⃗ 1 , g ⃗ 2 \vec{g}_1,\vec{g}_2 g 1,g 2 上引入与之垂直的第三个单位基矢 i ⃗ 3 \vec{i}_3 i 3,则
ϵ α β = ϵ α β 3 = g e α β 3 ( α , β = 1 , 2 )   ϵ α β = ϵ α β 3 = 1 g e α β 3 ( α , β = 1 , 2 )   其中, g = ( g ⃗ 1 × g ⃗ 2 ) ∙ i ⃗ 3 = ∣ g ⃗ 1 × g ⃗ 2 ∣ \epsilon_{\alpha\beta}=\epsilon_{\alpha\beta3}=\sqrt{g}e_{\alpha\beta3}\quad(\alpha,\beta=1,2)\\\ \\ \epsilon^{\alpha\beta}=\epsilon^{\alpha\beta3}=\frac{1}{\sqrt{g}}e^{\alpha\beta3}\quad(\alpha,\beta=1,2)\\\ \\ 其中,\sqrt{g}=(\vec{g}_1\times\vec{g}_2)\bullet\vec{i}_3=|\vec{g}_1\times\vec{g}_2| ϵαβ=ϵαβ3=g eαβ3(α,β=1,2) ϵαβ=ϵαβ3=g 1eαβ3(α,β=1,2) 其中,g =(g 1×g 2)i 3=g 1×g 2写作矩阵形式可有:
[ ϵ α β ] = [ 0 g − g 0 ] [ ϵ α β ] = [ 0 1 g − 1 g 0 ] [\epsilon_{\alpha\beta}] =\begin{bmatrix}0&\sqrt{g}\\-\sqrt{g}&0\end{bmatrix} \qquad [\epsilon^{\alpha\beta}] =\begin{bmatrix}0&\frac{1}{\sqrt{g}}\\-\frac{1}{\sqrt{g}}&0\end{bmatrix} [ϵαβ]=[0g g 0][ϵαβ]=[0g 1g 10]对应可得到二维的置换符号
e α β = e α β 3 = e α β = e α β 3 = { 1 ( α = 1 , β = 2 ) − 1 ( α = 2 , β = 1 ) 0 ( α = β ) e_{\alpha\beta}=e_{\alpha\beta3}=e^{\alpha\beta}=e^{\alpha\beta3}= \begin{cases}1&(\alpha=1,\beta=2)\\-1&(\alpha=2,\beta=1)\\0&(\alpha=\beta)\end{cases} eαβ=eαβ3=eαβ=eαβ3= 110(α=1,β=2)(α=2,β=1)(α=β)同样得到二维 ϵ ∼ δ \epsilon \sim \delta ϵδ恒等式
∣ δ p i δ q i δ p j δ q j ∣ = d e t ( δ β α ) e i j e p q = e i j e p q = ϵ i j ϵ p q = δ p i δ q j − δ q i δ p j   e i j e p j = ϵ i j ϵ p j = 2 δ p i   e i j e i j = ϵ i j ϵ i j = 3 ! \begin{vmatrix} \delta^{i}_p&\delta^{i}_q\\ \\ \delta^{j}_p&\delta^{j}_q \end{vmatrix} =det(\delta^{\alpha}_{\beta})e^{ij}e_{pq} =e^{ij}e_{pq} =\epsilon^{ij}\epsilon_{pq} =\delta^{i}_p\delta^{j}_q-\delta^{i}_q\delta^{j}_p \\\ \\ e^{ij}e_{pj} =\epsilon^{ij}\epsilon_{pj} =2\delta^{i}_p \\\ \\ e^{ij}e_{ij} =\epsilon^{ij}\epsilon_{ij} =3! δpiδpjδqiδqj =det(δβα)eijepq=eijepq=ϵijϵpq=δpiδqjδqiδpj eijepj=ϵijϵpj=2δpi eijeij=ϵijϵij=3!

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值