conda 虚拟环境配置

本文介绍了如何使用conda进行环境查看、创建、包管理以及pip在指定位置安装和卸载包的操作,包括`condainfo`,`condacreate`,`condalist`,`pipshow`,`pipinstall--target`等命令的用法和示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一些常用的代码
详细内容来自于:
【Python相关】conda常用命令介绍_conda install arch -py -c conda -forge_Chaos_Wang_的博客-CSDN博客

查看环境

conda info [-a] [--base] [-e] [-s] [--unsafe-channels]
-a, -all: 查看所有信息(不常用)。
–base:查看基环境所在路径。
-e, --envs:列出当前所有的 conda 环境。
-s, --system:列出所有的环境变量(不常用)。
–unsafe-channels:查看令牌公开的频道。

创建环境

conda create [-n 环境名称 | -p path] [--clone 环境名称] [-c channel_address] [PackageName]
# 示例
conda create --prefix=C:/ProgramData/Anaconda3/envs/pytorch python=3.8
-n, --name:我们可以根据环境名称来创建一个 conda 环境。
-p, --prefix:除了根据名称创建环境以外,我们还可以根据地址来创建 conda 环境。
–clone:--clone 主要用来克隆(复制)现有的环境。
-c, --channel:首先来介绍一下什么是 conda 频道。

查看当前环境的包

conda:

conda list [-n 环境名称 | -p path] [PackageName]

# -n, --name:查看python环境的环境名称。
# -p:也可以不指定环境名称,指定环境的绝对路径。

pip:

pip show [-n]
# -n 为需要查找的包名

结果展示:

(yolov5gpu) PS C:\Windows\system32> pip show torch
Name: torch
Version: 2.0.1+cu117
Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration
Home-page: https://pytorch.org/
Author: PyTorch Team
Author-email: packages@pytorch.org
License: BSD-3
Location: d:\anaconda3\envs\yolov5gpu\lib\site-packages
Requires: filelock, jinja2, networkx, sympy, typing-extensions
Required-by: thop, torchaudio, torchvision


在指定位置创建安装包

在指定位置创建环境pip install 包名==版本号 --target=路径 
-i 后面加的是镜像网站
1:

pip install chinesecalendar==1.8.1 --target=D:\bin.x64\Lib\site-packages -i https://pypi.tuna.tsinghua.edu.cn/simple

2:

pip install chinesecalendar --target=D:\bin.x64\Lib\site-packages -i https://pypi.tuna.tsinghua.edu.cn/simple

3:

pip install chinesecalendar==1.8.1 --t=D:\bin.x64\Lib\site-packages -i https://pypi.tuna.tsinghua.edu.cn/simple

4:

​
conda install [-n 环境名称 | -p path] [-c channel_address] [PackageName]

# -n, --name:安装PackageName包的环境名称。
# -p:也可以不指定环境名称,指定环境的绝对路径。
# -c, --channel:频道地址,一般不指定的话默认即可。

 install 和 uninstall 和remove 后面的参数设定是一样的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值