激光超声成像算法

 1、Fourier-domain backpropagation(傅里叶反向传播)

1.1 Fourier transforms

1.1.1 平面波的波动方程解

        在二维几何结构中,假设波动方程的解为平面波的形式:

$p(t,x,z)\propto e^{i(k_xx+k_zz-\omega t)}$

其中:

  •         $p(t,x,z)$ 表示在时间t 位置 xz处的波场,它通常表示在该时刻和位置上波的振幅或物理量的强度;
  •         k_{x} 和 k_{z} 分别是沿x方向和z方向的波数,分别表示各自方向上的空间频率。波数的单位通常为反长度1/m,表示在单位长度内波的相位变化多少。波数可以理解为波的“波长”的倒数。波数越大,波长越短,波的振动周期越密集。

                具体来说:

               k_{x} :描述了波在 x方向上的传播特性。k_{x}越大,意味着波在x方向上变化得越快,即波的空间振动频率越高。

               k_{z} :描述了波在z方向上的传播特性。与k_{x}类似,k_{z}越大,波在z方向上的振动越密集

  •         w是波的角频率,角频率w是波的振动频率,它描述了波在时间上的振荡速度。角频率的单位是弧度每秒(rad/s),它与通常使用的频率 f 的关系为:w=2\pi f,其中f的单位是赫兹(Hz)。角频率表示波在单位时间内经过的相位变化量。角频率越高,波在时间上的变化越快,振动周期越短。换句话说,高频率波的振动次数更多,其时间上的波动更为频繁。

        i是虚数单位。

        这个方程描述了波随着时间t和空间位置 x,z的传播,频率和波数决定了波的空间和时间变化。

 1.1.2 色散关系

        波数k_{x}k_{z}和角频率w之间的关系由色散方程决定:

$\frac{\omega^2}{\hat{c}^2}=k_x^2+k_z^2$

         $\hat{c}$是波速;

        色散关系表明,频率 w和波数k_{x}k_{z}​ 不是独立的。这里 k_{z}被选择为依赖变量,可以通过 k_{x} ​ 和 w计算得到。

1.1.3 波动方程的一般解

        波动方程的最一般解是所有可能解的组合:

$p(t,x,z)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}A(\omega,k_x)e^{i(k_xx+k_zz-\omega t)} dk_x d\omega $

        其中:

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Super_WY_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值