数学建模笔记(十):博弈模型

本文探讨了点球大战中的纳什均衡、交通拥堵的定价策略、市场竞争中的定价模型、公平分配原则、合作对策在污水处理中的应用,以及加权投票中权力的量化。通过实例揭示了博弈论在解决实际问题中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、概述

1.定义

在这里插入图片描述

2.分类

在这里插入图片描述

在这里插入图片描述

3.基本要素

在这里插入图片描述


二、点球大战

1.问题背景

在这里插入图片描述
数值表示该种情况下的进球概率
在这里插入图片描述

2.模型建立

在这里插入图片描述
在这里插入图片描述

3.纳什均衡与模型求解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


三、拥堵的早高峰

1.问题背景

在这里插入图片描述

2.模型假设

在这里插入图片描述
在这里插入图片描述

3.模型建立与求解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.模型解释

在这里插入图片描述
在这里插入图片描述

5.拥堵费

减少等待成本,从而降低总体成本
在这里插入图片描述
在这里插入图片描述


四、“一口价”的战略

1.问题背景

在这里插入图片描述

2.模型假设与建立

在这里插入图片描述
在这里插入图片描述
始终强调条件为 P s ≤ P b P_s\leq P_b PsPb时,才可成交
在这里插入图片描述

3.单一价格战略

在这里插入图片描述

4.线性价格战略

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


五、不患寡而患不均

1.问题背景

在这里插入图片描述

2.模型假设与建立

在这里插入图片描述

3.模型求解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.模型解释

在这里插入图片描述


六、效益的合理分配

1.问题背景

在这里插入图片描述

2.Shapley合作对策(n人合作对策)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.模型计算

在这里插入图片描述

4.合作对策的应用——污水处理费用的合理分担

(一)问题背景

在这里插入图片描述

(二)污水处理的5种方案

在这里插入图片描述
在这里插入图片描述

(三)Shapley合作对策

在这里插入图片描述
在这里插入图片描述

(四)shapley合作对策小结

在这里插入图片描述


七、加权投票中的权力的度量

1.问题背景

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.加权投票与获胜联盟

(一)例一:县区代表投票

在这里插入图片描述
在这里插入图片描述

(二)例二:委员会投票

在这里插入图片描述
在这里插入图片描述

3.权力指标

在这里插入图片描述

(一)Shapley权力指标

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(二)Banzhaf权力指标

在这里插入图片描述
在这里插入图片描述

(三)比较

在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值