[22-23春学期]AI作业2-监督学习

1.结构风险最小化(Structural Risk Minimization)是机器学习中一种常用的模型选择方法,它的目的是通过控制模型复杂度来平衡模型的准确性和泛化能力。该方法是由Vapnik等人在20世纪90年代提出的。

在结构风险最小化中,模型的复杂度可以通过模型的参数数量、特征数量、模型的偏差等因素来衡量。通常情况下,模型的复杂度越高,对训练数据的拟合程度就越高,但对新数据的泛化能力就越差。

因此,结构风险最小化的目标就是在满足一定的准确性要求的情况下,尽可能地降低模型的复杂度,以提高模型的泛化能力。这个过程可以通过选择适当的正则化方法、使用交叉验证等技术来实现。

总之,结构风险最小化是一种有效的模型选择方法,可以帮助机器学习算法在面对不同的问题时选择适当的模型复杂度,以实现更好的泛化性能。

2.正则化(Regularization)是机器学习中常用的一种技术,它的目的是通过对模型的复杂度进行惩罚,来避免模型出现过拟合现象,提高模型的泛化能力。

在机器学习中,模型的复杂度通常是通过模型的参数数量来衡量的。正则化技术通过在模型的损失函数中添加一个正则化项,来限制模型的参数数量或取值范围。常见的正则化方法包括 L1 正则化和 L2 正则化。

L1 正则化是通过在损失函数中添加模型参数的 L1 范数(参数的绝对值之和)来实现的,它可以将一些无关紧要的参数的权重降低到0,从而简化模型,提高泛化能力。 L2 正则化是通过在损失函数中添加模型参数的 L2 范数(参数的平方和)来实现的,它可以使得模型参数的取值更加平滑,降低模型的复杂度,提高泛化能力。

正则化技术可以应用于各种机器学习算法中,如线性回归、逻辑回归、支持向量机等。它可以有效地避免模型的过拟合问题,提高模型的泛化能力,并且对于高维数据的处理尤为有效。

3.线性回归是一种常见的回归分析方法,用于建立一个自变量与因变量之间线性关系的模型。线性回归模型可以用于预测或解释数据,可以用于多个领域,例如经济学、金融、医学、社会科学等。

线性回归模型基于最小二乘法(OLS)估计,即通过最小化残差平方和来估计模型参数。在简单线性回归中,只有一个自变量和一个因变量,可以用一条直线来表示它们之间的关系。在多元线性回归中,有多个自变量和一个因变量,可以用一个超平面来表示它们之间的关系。

线性回归模型的假设包括:线性性、常数方差、正态性和独立性。线性性假设要求自变量和因变量之间存在线性关系;常数方差假设要求误差的方差在不同自变量取值时保持不变;正态性假设要求误差服从正态分布;独立性假设要求各观测值之间相互独立。

线性回归模型可以通过多种方法来评价模型的拟合程度和预测能力,包括R-squared值、残差分析、方差膨胀因子(VIF)等。

4.逻辑回归是一种用于分类问题的常见机器学习算法。它是一种回归分析类型,用于模拟在给定一组预测变量的情况下某个特定事件发生的概率。

在逻辑回归中,响应变量是二元的(即仅有两个可能的值),其目标是基于一个或多个预测变量的值来模拟二元响应变量属于两个类别中的某一个类别的概率。逻辑回归模型使用逻辑函数(也称为sigmoid函数)将任何预测变量的值映射为介于0和1之间的值,这表示二元响应变量属于两个类别之一的概率。

逻辑回归模型是通过最大似然估计来估计的,其涉及寻找最大化在给定预测变量的情况下观察到二元响应变量的可能性的回归系数值。一旦估计出模型,就可以使用估计的系数来计算二元响应变量属于两个类别之一的预测概率,从而对新数据进行预测。

逻辑回归可以通过多项逻辑回归模型来扩展,从而处理超过两个类别的情况,该模型模拟在给定预测变量的情况下每个可能类别的概率。它还可以用于序数回归,该模型模拟在给定预测变量的情况下有序分类响应变量取每个可能值或更高值的概率。

逻辑回归广泛用于各个领域,包括医疗保健、金融、营销和社会科学等领域,用于预测患者患病的可能性、客户购买产品的可能性或某个人投票给某个政治候选人的可能性等任务。

5.分类问题中的输出层,例如将模型的输出转换为预测概率。其公式为:

σ(x) = 1 / (1 + e^(-x))

其中,x是输入值。Sigmoid函数具有以下性质:当输入x为负无穷时,σ(x)趋近于0;当输入x为正无穷时,σ(x)趋近于1;当输入x为0时,σ(x)为0.5。

SoftMax函数也是常用的激活函数,通常用于多分类问题中的输出层,将模型的输出转换为各个类别的预测概率。其公式为:

softmax(x_i) = e^(x_i) / sum(e^(x_j))

其中,x是输入值,i是当前类别,j是所有类别。SoftMax函数具有以下性质:所有输出的总和为1,每个输出值介于0和1之间。它可以将任何实数向量映射到一个概率分布上,因此在许多分类问题中非常有用。

6.决策树是一种基于树结构的分类模型,其中每个内部节点表示一个测试条件,每个叶节点表示一个类别。它是一种非常直观且易于理解的机器学习算法,可以用于分类和回归任务。在分类任务中,决策树用于预测一个样本属于哪个类别,而在回归任务中,决策树用于预测一个连续值的输出。

决策树的构建过程可以通过递归地将数据集分割成较小的子集来实现。在每个节点,算法选择一个最佳的特征,将数据集分成更小的子集,并在新的子集上递归地执行该过程,直到满足某些停止条件。

决策树有很多优点,包括易于解释和解释性强、处理多类别问题能力强、对缺失值不敏感等。同时,它也存在一些缺点,例如容易过拟合、不稳定性高等。

为了解决决策树的缺点,有许多改进的算法,如随机森林、梯度提升树等,它们通过组合多个决策树来获得更好的性能。

7.信息熵(Information entropy)是度量信息不确定性的一种指标,可以理解为信息的平均不确定性。在信息论中,熵是一个信源的平均信息量。熵越大,意味着不确定性越高,信息量也就越大。

条件熵(Conditional entropy)是在已知某一条件下的熵,表示在某一条件下信息的平均不确定性。

信息增益(Information gain)是指得知某一条件(属性)后,对减少样本集的不确定性所带来的贡献度。在决策树等机器学习算法中,信息增益被用来作为选择最优划分属性的指标,即选择信息增益最大的属性作为划分点。信息增益越大,表示该属性对样本的划分效果越好。

8.线性判别分析(Linear Discriminant Analysis,简称LDA)是一种经典的监督学习方法,用于特征提取和分类任务。其主要目标是将原始数据映射到低维空间中,使得映射后的数据能够被有效地区分。

LDA 的基本思想是通过最大化类间距离、最小化类内距离的方式来进行数据的降维和分类。其主要步骤如下:

  1. 对于给定的数据集,首先计算每个类别的均值向量和总体均值向量。

  1. 计算类间散度矩阵和类内散度矩阵。类间散度矩阵反映不同类别之间的差异程度,类内散度矩阵反映同一类别内部的差异程度。

  1. 对类内散度矩阵进行特征值分解,得到特征值和特征向量。

  1. 选择最大的k个特征值所对应的特征向量,将原始数据映射到低维空间中。这k个特征向量构成的矩阵就是变换矩阵,用于将原始数据映射到低维空间中。

  1. 使用变换矩阵对新的样本进行分类,通过计算样本点在低维空间中的位置来确定其所属的类别。

LDA 在许多领域中都有广泛的应用,例如人脸识别、手写数字识别、文本分类等。

9.概率近似正确(Probably Approximately Correct,简称PAC)是机器学习中一个重要的理论框架,用于研究分类器的可学习性和泛化能力。

在PAC学习中,我们假设样本的分布是未知的,我们要从一些已知的样本中学习一个分类器,使得其在新的样本上具有良好的泛化能力。具体来说,我们希望在学习过程中获得以下两个性质:

1.可学习性:我们希望学习算法能够从有限数量的样本中学习出一个与真实分类器足够接近的分类器。这个性质称为概率收敛。

2.泛化能力:我们希望学习算法能够在新的样本上表现良好,即它的分类误差率在一个给定的置信水平下是有界的。这个性质称为概率界。

PAC学习的目标是找到一种算法,它在给定训练集的条件下,可以产生一个分类器,其误差率在给定的置信水平下是有界的。具体来说,PAC学习要求我们找到一个算法,使得对于任意一组由未知分布产生的样本,以很高的概率(即概率接近1)能够产生一个误差率较小的分类器。

10.自适应提升(AdaBoost)是一种集成学习算法,旨在提高弱分类器的准确性。AdaBoost的基本思想是对于错误分类的样本增加权重,以便在下一个迭代中更好地分类这些样本。

自适应提升AdaBoost具体实现步骤如下:

  1. 初始化样本权重,通常设置为均匀分布。

  1. 对于T个迭代:a. 在当前的样本权重下训练一个弱分类器。b. 计算该分类器在训练集上的误差率。c. 计算分类器的权重,其中误差率越低的分类器权重越高。d. 更新样本权重,增加错误分类样本的权重,减少正确分类样本的权重。

  1. 将T个弱分类器加权组合成一个强分类器。

AdaBoost的优点是它能够处理高维度的数据,对于噪声和异常值也具有一定的鲁棒性。AdaBoost的缺点是它对于过度拟合和噪声敏感。此外,AdaBoost需要多次迭代,因此训练时间可能较长。

自适应提升AdaBoost是一种非常流行的机器学习算法,可以用于分类和回归问题。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值