定义
点可导
函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的邻域 U ( x 0 ) U(x_0) U(x0) 有定义,给定一个增量 Δ x \Delta x Δx( x 0 + Δ x ∈ U ( x 0 ) x_0+\Delta x\in U(x_0) x0+Δx∈U(x0), Δ x \Delta x Δx 可正可负),且极限 lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim\limits_{\Delta x\rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} Δx→0limΔxf(x0+Δx)−f(x0) 存在,则称此极限为 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处的导数,记作 f ′ ( x 0 ) f'(x_0) f′(x0) 或 y ′ ∣ x = x 0 y'|_{x=x_0} y′∣x=x0 或 d y d x ∣ x = x 0 \frac{dy}{dx}|_{x=x_0} dxdy∣x=x0 或 d f ( x ) d x ∣ x = x 0 \frac{df(x)}{dx}|_{x=x_0} dxdf(x)∣x=x0
此极限还有另一种表示形式,令
x
=
x
0
+
Δ
x
x=x_0+\Delta x
x=x0+Δx,则
Δ
x
=
x
−
x
0
\Delta x=x-x_0
Δx=x−x0
f
′
(
x
0
)
=
lim
Δ
x
→
x
0
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
Δ
x
=
lim
x
→
x
0
f
(
x
)
−
f
(
x
0
)
x
−
x
0
\begin{aligned}f'(x_0)&=\lim\limits_{\Delta x\rightarrow x_0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\\&=\lim\limits_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}\end{aligned}
f′(x0)=Δx→x0limΔxf(x0+Δx)−f(x0)=x→x0limx−x0f(x)−f(x0)
由定义可知导数 f ′ ( x ) f'(x) f′(x) 实质就是一个特殊的极限
区间可导
若函数 y = f ( x ) y=f(x) y=f(x) 在区间 I x I_x Ix 的每一点都可导,记作 f ′ ( x ) f'(x) f′(x) 或 y ′ y' y′ 或 d y d x \frac{dy}{dx} dxdy 或 d f ( x ) d x \frac{df(x)}{dx} dxdf(x),称 f ′ ( x ) f'(x) f′(x) 为 f ( x ) f(x) f(x) 的导函数
单侧导数
左导数
函数
f
(
x
)
f(x)
f(x) 在点
x
0
x_0
x0 的左邻域
U
(
x
0
−
)
U(x_0^-)
U(x0−) 有定义,则左导数定义为
f
′
(
x
0
−
)
=
lim
x
→
x
0
−
f
(
x
)
−
f
(
x
0
)
x
−
x
0
f'(x_0^-)=\lim\limits_{x\rightarrow x_0^-}\frac{f(x)-f(x_0)}{x-x_0}
f′(x0−)=x→x0−limx−x0f(x)−f(x0)
右导数
函数
f
(
x
)
f(x)
f(x) 在点
x
0
x_0
x0 的右邻域
U
(
x
0
+
)
U(x_0^+)
U(x0+) 有定义,则右导数定义为
f
′
(
x
0
+
)
=
lim
x
→
x
0
+
f
(
x
)
−
f
(
x
0
)
x
−
x
0
f'(x_0^+)=\lim\limits_{x\rightarrow x_0^+}\frac{f(x)-f(x_0)}{x-x_0}
f′(x0+)=x→x0+limx−x0f(x)−f(x0)
存在条件
函数 y = f ( x ) y=f(x) y=f(x) 在 x 0 x_0 x0 处存在导数的充要条件为
-
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处连续
此条件保证了 f ( x 0 ) f(x_0) f(x0) 存在且导数定义式极限不为无穷大 -
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处左右导数相等
此条件保证了 x x x 以任意方式趋近 x 0 x_0 x0 的结果都一样
这两个条件缺一不可,如下图
- 左图 y = x ( x − 2 ) x − 2 y=\frac{x(x-2)}{x-2} y=x−2x(x−2) 在点 ( 2 , 2 ) (2,2) (2,2) 处不连续但是左右导数相等, f ( 2 ) f(2) f(2) 不存在,因此极限 lim x → 2 f ( x ) − f ( 2 ) x − 2 \lim\limits_{x\rightarrow 2}\frac{f(x)-f(2)}{x-2} x→2limx−2f(x)−f(2) 不存在, f ( x ) f(x) f(x) 在 2 2 2 处导数不存在
- 右图 y = ∣ x ∣ y=|x| y=∣x∣ 在点 ( 0 , 0 ) (0,0) (0,0) 处左右导数不相等但是连续,左导数 f ( 0 − ) = − 1 f(0^-)=-1 f(0−)=−1、右导数 f ( 0 + ) = 1 f(0^+)=1 f(0+)=1,因此导数不存在
意义
函数意义
函数 y = f ( x ) y=f(x) y=f(x) 在 x 0 x_0 x0 处的导数 f ′ ( x 0 ) f'(x_0) f′(x0) 即为 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处的变化率(变化快慢)
几何意义
函数 y = f ( x ) y=f(x) y=f(x) 在 x 0 x_0 x0 处的导数 f ′ ( x 0 ) f'(x_0) f′(x0) 即为 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处切线的斜率
求导法则
和差积商
u = u ( x ) , v = v ( x ) u=u(x),~v=v(x) u=u(x), v=v(x) 都可导,则
- ( u ± v ) ′ = u ′ ± v ′ (u\pm v)'=u'\pm v' (u±v)′=u′±v′
- ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)′=u′v+uv′
- ( u v ) ′ = u ′ v − u v ′ v 2 , v ( x ) ≠ 0 (\frac{u}{v})'=\frac{u'v-uv'}{v^2},~v(x)\neq 0 (vu)′=v2u′v−uv′, v(x)=0
( u ± v ) ′ = u ′ ± v ′ (u\pm v)'=u'\pm v' (u±v)′=u′±v′ 由极限运算法则的加减法则易知
( u v ) ′ = lim Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x ) Δ x = lim Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x + Δ x ) + u ( x ) v ( x + Δ x ) − u ( x ) v ( x ) Δ x = lim Δ x → 0 [ u ( x + Δ x ) − u ( x ) ] v ( x + Δ x ) Δ x + lim Δ x → 0 [ v ( x + Δ x ) − v ( x ) ] u ( x ) Δ x = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) \begin{aligned} (uv)'&=\lim\limits_{\Delta x\rightarrow 0}\frac{u(x+\Delta x)v(x+\Delta x)-u(x)v(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{u(x+\Delta x)v(x+\Delta x)-u(x)v(x+\Delta x)+u(x)v(x+\Delta x)-u(x)v(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{[u(x+\Delta x)-u(x)]v(x+\Delta x)}{\Delta x}+\lim\limits_{\Delta x\rightarrow 0}\frac{[v(x+\Delta x)-v(x)]u(x)}{\Delta x}\\ &=u'(x)v(x)+u(x)v'(x) \end{aligned} (uv)′=Δx→0limΔxu(x+Δx)v(x+Δx)−u(x)v(x)=Δx→0limΔxu(x+Δx)v(x+Δx)−u(x)v(x+Δx)+u(x)v(x+Δx)−u(x)v(x)=Δx→0limΔx[u(x+Δx)−u(x)]v(x+Δx)+Δx→0limΔx[v(x+Δx)−v(x)]u(x)=u′(x)v(x)+u(x)v′(x)
( u v ) ′ = lim Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x ) Δ x = lim Δ x → 0 u ( x + Δ x ) v ( x ) − u ( x ) v ( x + Δ x ) v ( x + Δ x ) v ( x ) Δ x = lim Δ x → 0 u ( x + Δ x ) v ( x ) − u ( x ) v ( x ) + u ( x ) v ( x ) − u ( x ) v ( x + Δ x ) v ( x + Δ x ) v ( x ) Δ x = lim Δ x → 0 [ u ( x + Δ x ) − u ( x ) ] v ( x ) − u ( x ) [ v ( x + Δ x ) − v ( x ) ] v ( x + Δ x ) v ( x ) Δ x = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v 2 ( x ) \begin{aligned} (\frac{u}{v})'&=\lim\limits_{\Delta x\rightarrow 0}\frac{\frac{u(x+\Delta x)}{v(x+\Delta x)}-\frac{u(x)}{v(x)}}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\frac{u(x+\Delta x)v(x)-u(x)v(x+\Delta x)}{v(x+\Delta x)v(x)}}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{u(x+\Delta x)v(x)-u(x)v(x)+u(x)v(x)-u(x)v(x+\Delta x)}{v(x+\Delta x)v(x)\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{[u(x+\Delta x)-u(x)]v(x)-u(x)[v(x+\Delta x)-v(x)]}{v(x+\Delta x)v(x)\Delta x}\\ &=\frac{u'(x)v(x)-u(x)v'(x)}{v^2(x)} \end{aligned} (vu)′=Δx→0limΔxv(x+Δx)u(x+Δx)−v(x)u(x)=Δx→0limΔxv(x+Δx)v(x)u(x+Δx)v(x)−u(x)v(x+Δx)=Δx→0limv(x+Δx)v(x)Δxu(x+Δx)v(x)−u(x)v(x)+u(x)v(x)−u(x)v(x+Δx)=Δx→0limv(x+Δx)v(x)Δx[u(x+Δx)−u(x)]v(x)−u(x)[v(x+Δx)−v(x)]=v2(x)u′(x)v(x)−u(x)v′(x)
反函数
函数
y
=
f
(
x
)
y=f(x)
y=f(x) 与
x
=
f
−
1
(
y
)
x=f^{-1}(y)
x=f−1(y) 互为反函数,则
f
′
(
x
)
=
1
[
f
−
1
(
y
)
]
′
f'(x)=\frac{1}{[f^{-1}(y)]'}
f′(x)=[f−1(y)]′1
也可写成
d
y
d
x
=
1
d
x
d
y
\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}
dxdy=dydx1
给定 x x x 一个增量 Δ x \Delta x Δx,对应的 y y y 的增量为 Δ y \Delta y Δy
因为可导一定连续,即 lim Δ x → 0 Δ y \lim\limits_{\Delta x\rightarrow 0}\Delta y Δx→0limΔy,则 Δ x → 0 \Delta x\rightarrow 0 Δx→0 时 Δ y → 0 \Delta y\rightarrow 0 Δy→0
f ′ ( x ) = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 1 Δ x Δ y = lim Δ y → 0 1 Δ x Δ y = 1 lim Δ y → 0 Δ x Δ y = 1 [ f − 1 ( y ) ] ′ \begin{aligned} f'(x)&=\lim\limits_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{1}{\frac{\Delta x}{\Delta y}}\\ &=\lim\limits_{\Delta y\rightarrow 0}\frac{1}{\frac{\Delta x}{\Delta y}}\\ &=\frac{1}{\lim\limits_{\Delta y\rightarrow 0}\frac{\Delta x}{\Delta y}}\\ &=\frac{1}{[f^{-1}(y)]'} \end{aligned} f′(x)=Δx→0limΔxΔy=Δx→0limΔyΔx1=Δy→0limΔyΔx1=Δy→0limΔyΔx1=[f−1(y)]′1
复合函数
复合函数
y
=
f
[
g
(
x
)
]
y=f[g(x)]
y=f[g(x)] 由函数
y
=
f
(
u
)
y=f(u)
y=f(u) 和
u
=
g
(
x
)
u=g(x)
u=g(x) 复合而成,则
y
′
=
f
′
(
u
)
⋅
g
′
(
x
)
y'=f'(u)\cdot g'(x)
y′=f′(u)⋅g′(x)
也可写成
d
y
d
x
=
d
y
d
u
⋅
d
u
d
x
\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}
dxdy=dudy⋅dxdu
给定 x x x 一个增量 Δ x \Delta x Δx,对应的 u u u 的增量为 Δ u \Delta u Δu,对应的 y y y 的增量为 Δ y \Delta y Δy
∵ f ′ ( u ) = lim Δ u → 0 Δ y Δ u \because f'(u)=\lim\limits_{\Delta u\rightarrow 0}\frac{\Delta y}{\Delta u} ∵f′(u)=Δu→0limΔuΔy
∴ Δ y Δ u = f ′ ( u ) + α ( Δ u ) \therefore\frac{\Delta y}{\Delta u}=f'(u)+\alpha(\Delta u) ∴ΔuΔy=f′(u)+α(Δu)
∴ Δ y = f ′ ( u ) Δ u + α ( Δ u ) Δ u \therefore\Delta y=f'(u)\Delta u+\alpha(\Delta u)\Delta u ∴Δy=f′(u)Δu+α(Δu)Δu
∴ Δ y Δ x = f ′ ( u ) Δ u Δ x + α ( Δ u ) Δ u Δ x \therefore\frac{\Delta y}{\Delta x}=f'(u)\frac{\Delta u}{\Delta x}+\alpha(\Delta u)\frac{\Delta u}{\Delta x} ∴ΔxΔy=f′(u)ΔxΔu+α(Δu)ΔxΔu
可导一定连续,则 Δ x → 0 \Delta x\rightarrow 0 Δx→0 时 Δ u → 0 \Delta u\rightarrow 0 Δu→0, Δ u → 0 \Delta u\rightarrow 0 Δu→0 时 Δ y → 0 \Delta y\rightarrow 0 Δy→0
d y d x = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 [ f ′ ( u ) Δ u Δ x + α ( Δ u ) Δ u Δ x ] = f ′ ( u ) ⋅ g ′ ( x ) \begin{aligned} \frac{dy}{dx}&=\lim\limits_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}[f'(u)\frac{\Delta u}{\Delta x}+\alpha(\Delta u)\frac{\Delta u}{\Delta x}]\\ &=f'(u)\cdot g'(x) \end{aligned} dxdy=Δx→0limΔxΔy=Δx→0lim[f′(u)ΔxΔu+α(Δu)ΔxΔu]=f′(u)⋅g′(x)
作用
判断函数单调性
若函数 y = f ( x ) y=f(x) y=f(x) 在区间 ( a , b ) (a,b) (a,b) 内导函数 f ′ ( x ) ≥ 0 f'(x)\geq 0 f′(x)≥0 且等号只在有限个点成立,则 f ( x ) f(x) f(x) 在 ( a , b ) (a,b) (a,b) 内单调递增
若函数 y = f ( x ) y=f(x) y=f(x) 在区间 ( a , b ) (a,b) (a,b) 内导函数 f ′ ( x ) ≤ 0 f'(x)\leq 0 f′(x)≤0 且等号只在有限个点成立,则 f ( x ) f(x) f(x) 在 ( a , b ) (a,b) (a,b) 内单调递减
判断函数凹凸性
若函数 y = f ( x ) y=f(x) y=f(x) 在区间 ( a , b ) (a,b) (a,b) 内二阶导数 f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0,则 f ( x ) f(x) f(x) 在 ( a , b ) (a,b) (a,b) 内为凹函数
若函数 y = f ( x ) y=f(x) y=f(x) 在区间 ( a , b ) (a,b) (a,b) 内二阶导数 f ′ ′ ( x ) < 0 f''(x)<0 f′′(x)<0,则 f ( x ) f(x) f(x) 在 ( a , b ) (a,b) (a,b) 内为凸函数
判断函数极值点
若函数 y = f ( x ) y=f(x) y=f(x) 在 x 0 x_0 x0 处取得极值,则 f ′ ( x 0 ) = 0 f'(x_0)=0 f′(x0)=0
常见函数的导数
原函数 | 导函数 |
---|---|
f ( x ) = C f(x)=C f(x)=C | f ′ ( x ) = 0 f'(x)=0 f′(x)=0 |
f ( x ) = x μ f(x)=x^\mu f(x)=xμ | f ′ ( x ) = μ x μ − 1 f'(x)=\mu x^{\mu-1} f′(x)=μxμ−1 |
f ( x ) = a x f(x)=a^x f(x)=ax | f ′ ( x ) = a x ln a f'(x)=a^x\ln a f′(x)=axlna |
f ( x ) = e x f(x)=e^x f(x)=ex | f ′ ( x ) = e x f'(x)=e^x f′(x)=ex |
f ( x ) = log a x f(x)=\log_ax f(x)=logax | f ′ ( x ) = 1 x ln a f'(x)=\frac{1}{x\ln a} f′(x)=xlna1 |
f ( x ) = ln x f(x)=\ln x f(x)=lnx | f ′ ( x ) = 1 x f'(x)=\frac{1}{x} f′(x)=x1 |
f ( x ) = sin x f(x)=\sin x f(x)=sinx | f ′ ( x ) = cos x f'(x)=\cos x f′(x)=cosx |
f ( x ) = cos x f(x)=\cos x f(x)=cosx | f ′ ( x ) = − sin x f'(x)=-\sin x f′(x)=−sinx |
f ( x ) = tan x f(x)=\tan x f(x)=tanx | f ′ ( x ) = sec 2 x f'(x)=\sec^2x f′(x)=sec2x |
f ( x ) = cot x f(x)=\cot x f(x)=cotx | f ′ ( x ) = − csc 2 x f'(x)=-\csc^2x f′(x)=−csc2x |
f ( x ) = sec x f(x)=\sec x f(x)=secx | f ′ ( x ) = sec x tan x f'(x)=\sec x\tan x f′(x)=secxtanx |
f ( x ) = csc x f(x)=\csc x f(x)=cscx | f ′ ( x ) = − csc x cot x f'(x)=-\csc x\cot x f′(x)=−cscxcotx |
f ( x ) = arcsin x f(x)=\arcsin x f(x)=arcsinx | f ′ ( x ) = 1 1 − x 2 f'(x)=\frac{1}{\sqrt{1-x^2}} f′(x)=1−x21 |
f ( x ) = arccos x f(x)=\arccos x f(x)=arccosx | f ′ ( x ) = 1 − 1 − x 2 f'(x)=\frac{1}{-\sqrt{1-x^2}} f′(x)=−1−x21 |
f ( x ) = arctan x f(x)=\arctan x f(x)=arctanx | f ′ ( x ) = 1 1 + x 2 f'(x)=\frac{1}{1+x^2} f′(x)=1+x21 |
f ( x ) = arccot x f(x)=\text{arccot}~x f(x)=arccot x | f ′ ( x ) = − 1 1 + x 2 f'(x)=-\frac{1}{1+x^2} f′(x)=−1+x21 |
常数函数
f ( x ) = C f(x)=C f(x)=C,其中 C C C 为常数,则 f ′ ( x ) = 0 f'(x)=0 f′(x)=0
证明过程f ′ ( x ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 = lim x → x 0 C − C x − x 0 = lim x → x 0 0 x − x 0 = 0 \begin{aligned}f'(x)&=\lim\limits_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}\\&=\lim\limits_{x\rightarrow x_0}\frac{C-C}{x-x_0}\\&=\lim\limits_{x\rightarrow x_0}\frac{0}{x-x_0}\\&=0\end{aligned} f′(x)=x→x0limx−x0f(x)−f(x0)=x→x0limx−x0C−C=x→x0limx−x00=0
幂函数
f ( x ) = x μ f(x)=x^\mu f(x)=xμ,其中 μ ∈ R \mu\in\mathbb R μ∈R,则 f ′ ( x ) = μ x μ − 1 f'(x)=\mu x^{\mu-1} f′(x)=μxμ−1
证明过程f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim Δ x → 0 ( x + Δ x ) μ − x μ Δ x = lim Δ x → 0 x μ [ ( 1 + Δ x x ) μ − 1 ] Δ x = lim Δ x → 0 x μ − 1 [ ( 1 + Δ x x ) μ − 1 ] Δ x x = x μ − 1 lim Δ x → 0 ( 1 + Δ x x ) μ − 1 Δ x x = x μ − 1 lim Δ x → 0 μ Δ x x Δ x x = μ x μ − 1 \begin{aligned} f'(x)&=\lim\limits_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{(x+\Delta x)^\mu-x^\mu}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{x^\mu[(1+\frac{\Delta x}{x})^\mu-1]}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{x^{\mu-1}[(1+\frac{\Delta x}{x})^\mu-1]}{\frac{\Delta x}{x}}\\ &=x^{\mu-1}\lim\limits_{\Delta x\rightarrow 0}\frac{(1+\frac{\Delta x}{x})^\mu-1}{\frac{\Delta x}{x}}\\ &=x^{\mu-1}\lim\limits_{\Delta x\rightarrow 0}\frac{\mu\frac{\Delta x}{x}}{\frac{\Delta x}{x}}\\ &=\mu x^{\mu-1} \end{aligned} f′(x)=Δx→0limΔxf(x+Δx)−f(x)=Δx→0limΔx(x+Δx)μ−xμ=Δx→0limΔxxμ[(1+xΔx)μ−1]=Δx→0limxΔxxμ−1[(1+xΔx)μ−1]=xμ−1Δx→0limxΔx(1+xΔx)μ−1=xμ−1Δx→0limxΔxμxΔx=μxμ−1
由常见等价无穷小知 ( 1 + Δ x x ) μ − 1 ∼ μ Δ x x (1+\frac{\Delta x}{x})^\mu-1\sim\mu\frac{\Delta x}{x} (1+xΔx)μ−1∼μxΔx
指数函数
f ( x ) = a x f(x)=a^x f(x)=ax,其中 a ∈ R , a > 0 , a ≠ 1 a\in\mathbb{R},a>0,a\neq 1 a∈R,a>0,a=1,则 f ′ ( x ) = a x ln a f'(x)=a^x\ln a f′(x)=axlna
证明过程f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim Δ x → 0 a x + Δ x − a x Δ x = lim Δ x → 0 a x ( a Δ x − 1 ) Δ x = a x lim Δ x → 0 a Δ x − 1 Δ x = a x ln a \begin{aligned} f'(x)&=\lim\limits_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{a^{x+\Delta x}-a^x}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{a^x(a^{\Delta x}-1)}{\Delta x}\\ &=a^x\lim\limits_{\Delta x\rightarrow 0}\frac{a^{\Delta x}-1}{\Delta x}\\ &=a^x\ln a \end{aligned} f′(x)=Δx→0limΔxf(x+Δx)−f(x)=Δx→0limΔxax+Δx−ax=Δx→0limΔxax(aΔx−1)=axΔx→0limΔxaΔx−1=axlna
由常见等价无穷小知 a x − 1 ∼ x ln a a^x-1\sim x\ln a ax−1∼xlna
对数函数
f ( x ) = log a x f(x)=\log_a x f(x)=logax,其中 a ∈ R , a > 0 , a ≠ 1 a\in\mathbb{R},a>0,a\neq 1 a∈R,a>0,a=1,则 f ′ ( x ) = 1 x ln a f'(x)=\frac{1}{x\ln a} f′(x)=xlna1
证明过程f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim Δ x → 0 log a ( x + Δ x ) − log a x Δ x = lim Δ x → 0 log a ( x + Δ x ) x Δ x = lim Δ x → 0 log a ( 1 + Δ x x ) x ⋅ Δ x x = 1 x lim Δ x → 0 log a ( 1 + Δ x x ) x Δ x = 1 x log a lim Δ x → 0 ( 1 + Δ x x ) x Δ x = 1 x log a e = 1 x ln a \begin{aligned} f'(x)&=\lim\limits_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\log_a(x+\Delta x)-\log_a x}{\Delta x}\\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\log_a\frac{(x+\Delta x)}{x}}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\log_a(1+\frac{\Delta x}{x})}{x\cdot \frac{\Delta x}{x}}\\ &=\frac{1}{x}\lim\limits_{\Delta x\rightarrow 0}\log_a(1+\frac{\Delta x}{x})^\frac{x}{\Delta x}\\ &=\frac{1}{x}\log_a\lim\limits_{\Delta x\rightarrow 0}(1+\frac{\Delta x}{x})^{\frac{x}{\Delta x}}\\ &=\frac{1}{x}\log_a e\\ &=\frac{1}{x\ln a} \end{aligned} f′(x) =Δx→0limΔxf(x+Δx)−f(x)=Δx→0limΔxloga(x+Δx)−logax=Δx→0limΔxlogax(x+Δx)=Δx→0limx⋅xΔxloga(1+xΔx)=x1Δx→0limloga(1+xΔx)Δxx=x1logaΔx→0lim(1+xΔx)Δxx=x1logae=xlna1
由自然底数 e e e 的定义知 lim x → 0 ( 1 + x ) 1 x = e \lim\limits_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=e x→0lim(1+x)x1=e
三角函数
正弦函数
f ( x ) = sin x f(x)=\sin x f(x)=sinx,则 f ′ ( x ) = cos x f'(x)=\cos x f′(x)=cosx
证明过程f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim Δ x → 0 sin ( x + Δ x ) − sin x Δ x = lim Δ x → 0 2 cos ( 2 x + Δ x 2 ) sin ( Δ x 2 ) Δ x = lim Δ x → 0 cos ( x + Δ x 2 ) sin Δ x 2 Δ x 2 = cos x \begin{aligned} f'(x)&=\lim\limits_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\sin(x+\Delta x)-\sin x}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{2\cos(\frac{2x+\Delta x}{2})\sin(\frac{\Delta x}{2})}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\cos(x+\frac{\Delta x}{2})\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}\\ &=\cos x \end{aligned} f′(x)=Δx→0limΔxf(x+Δx)−f(x)=Δx→0limΔxsin(x+Δx)−sinx=Δx→0limΔx2cos(22x+Δx)sin(2Δx)=Δx→0lim2Δxcos(x+2Δx)sin2Δx=cosx
由和差化积公式知 sin ( x + Δ x ) − sin x = 2 cos ( 2 x + Δ x 2 ) sin Δ x 2 \sin(x+\Delta x)-\sin x=2\cos(\frac{2x+\Delta x}{2})\sin\frac{\Delta x}{2} sin(x+Δx)−sinx=2cos(22x+Δx)sin2Δx
由两个重要极限知 lim Δ x → 0 sin Δ x 2 Δ x 2 = 1 \lim\limits_{\Delta x\rightarrow 0}\frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}=1 Δx→0lim2Δxsin2Δx=1
余弦函数
f ( x ) = cos x f(x)=\cos x f(x)=cosx,则 f ′ ( x ) = − sin x f'(x)=-\sin x f′(x)=−sinx
证明过程f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim Δ x → 0 cos ( x + Δ x ) − cos x Δ x = lim Δ x → 0 − 2 sin ( 2 x + Δ x 2 ) sin ( Δ x 2 ) Δ x = lim Δ x → 0 − sin ( x + Δ x 2 ) sin Δ x 2 Δ x 2 = sin x \begin{aligned} f'(x)&=\lim\limits_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\cos(x+\Delta x)-\cos x}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{-2\sin(\frac{2x+\Delta x}{2})\sin(\frac{\Delta x}{2})}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{-\sin(x+\frac{\Delta x}{2})\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}\\ &=\sin x \end{aligned} f′(x)=Δx→0limΔxf(x+Δx)−f(x)=Δx→0limΔxcos(x+Δx)−cosx=Δx→0limΔx−2sin(22x+Δx)sin(2Δx)=Δx→0lim2Δx−sin(x+2Δx)sin2Δx=sinx
由和差化积公式知 cos ( x + Δ x ) − cos x = − 2 sin ( 2 x + Δ x 2 ) sin Δ x 2 \cos(x+\Delta x)-\cos x=-2\sin(\frac{2x+\Delta x}{2})\sin\frac{\Delta x}{2} cos(x+Δx)−cosx=−2sin(22x+Δx)sin2Δx
由两个重要极限知 lim Δ x → 0 sin Δ x 2 Δ x 2 = 1 \lim\limits_{\Delta x\rightarrow 0}\frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}=1 Δx→0lim2Δxsin2Δx=1
正切函数
f ( x ) = tan x f(x)=\tan x f(x)=tanx,则 f ′ ( x ) = sec 2 x f'(x)=\sec^2 x f′(x)=sec2x
证明过程f ′ ( x ) = ( sin x cos x ) ′ = ( sin x ) ′ cos x − sin x ( cos x ) ′ cos 2 x = c o s 2 x + s i n 2 x cos 2 x = 1 cos 2 x = sec 2 x \begin{aligned} f'(x)&=(\frac{\sin x}{\cos x})'\\ &=\frac{(\sin x)'\cos x-\sin x(\cos x)'}{\cos^2x}\\ &=\frac{cos^2x+sin^2x}{\cos^2x}\\ &=\frac{1}{\cos^2x}\\ &=\sec^2x \end{aligned} f′(x)=(cosxsinx)′=cos2x(sinx)′cosx−sinx(cosx)′=cos2xcos2x+sin2x=cos2x1=sec2x
反三角函数
反正弦函数
f ( x ) = arcsin x f(x)=\arcsin x f(x)=arcsinx,则 f ′ ( x ) = 1 1 − x 2 f'(x)=\frac{1}{\sqrt{1-x^2}} f′(x)=1−x21
证明过程f ′ ( x ) = 1 [ f − 1 ( y ) ] ′ = 1 [ sin ( y ) ] ′ = 1 cos y \begin{aligned} f'(x)&=\frac{1}{[f^{-1}(y)]'}\\ &=\frac{1}{[\sin(y)]'}\\ &=\frac{1}{\cos y} \end{aligned} f′(x)=[f−1(y)]′1=[sin(y)]′1=cosy1
∵ x = sin y , sin 2 y + cos 2 y = 1 \because x=\sin y,~\sin^2y+\cos^2y=1 ∵x=siny, sin2y+cos2y=1
∴ x 2 + cos 2 y = 1 \therefore x^2+\cos^2y=1 ∴x2+cos2y=1
∴ cos y = ± 1 − x 2 \therefore \cos y=\pm\sqrt{1-x^2} ∴cosy=±1−x2
∵ y ∈ [ − π 2 , π 2 ] \because y\in[-\frac{\pi}{2},~\frac{\pi}{2}] ∵y∈[−2π, 2π]
∴ cos y = 1 − x 2 \therefore \cos y=\sqrt{1-x^2} ∴cosy=1−x2
∴ f ′ ( x ) = 1 1 − x 2 \therefore f'(x)=\frac{1}{\sqrt{1-x^2}} ∴f′(x)=1−x21
反余弦函数
f ( x ) = arccos x f(x)=\arccos x f(x)=arccosx,则 f ′ ( x ) = − 1 1 − x 2 f'(x)=-\frac{1}{\sqrt{1-x^2}} f′(x)=−1−x21
证明过程f ′ ( x ) = 1 [ f − 1 ( y ) ] ′ = 1 ( cos y ) ′ = 1 − sin y = − 1 sin y \begin{aligned} f'(x)&=\frac{1}{[f^{-1}(y)]'}\\ &=\frac{1}{(\cos y)'}\\ &=\frac{1}{-\sin y}\\ &=-\frac{1}{\sin y} \end{aligned} f′(x)=[f−1(y)]′1=(cosy)′1=−siny1=−siny1
∵ x = cos y , sin 2 y + cos 2 y = 1 \because x=\cos y,~\sin^2y+\cos^2y=1 ∵x=cosy, sin2y+cos2y=1
∴ sin 2 y + x 2 = 1 \therefore \sin^2y+x^2=1 ∴sin2y+x2=1
∴ sin y = ± 1 − x 2 \therefore \sin y=\pm\sqrt{1-x^2} ∴siny=±1−x2
∵ y ∈ [ 0 , π ] \because y\in[0,~\pi] ∵y∈[0, π]
∴ sin y = 1 − x 2 \therefore \sin y=\sqrt{1-x^2} ∴siny=1−x2
∴ f ′ ( x ) = − 1 1 − x 2 \therefore f'(x)=-\frac{1}{\sqrt{1-x^2}} ∴f′(x)=−1−x21
反正切函数
f ( x ) = arctan x f(x)=\arctan x f(x)=arctanx,则 f ′ ( x ) = 1 1 + x 2 f'(x)=\frac{1}{1+x^2} f′(x)=1+x21
证明过程f ′ ( x ) = 1 [ f − 1 ( y ) ] ′ = 1 ( tan y ) ′ = 1 sec 2 y \begin{aligned} f'(x)&=\frac{1}{[f^{-1}(y)]'}\\ &=\frac{1}{(\tan y)'}\\ &=\frac{1}{\sec^2y} \end{aligned} f′(x)=[f−1(y)]′1=(tany)′1=sec2y1
∵ x = tan y , 1 + tan 2 y = sec 2 y \because x=\tan y,~1+\tan^2y=\sec^2y ∵x=tany, 1+tan2y=sec2y
∴ 1 + x 2 = sec 2 y \therefore 1+x^2=\sec^2y ∴1+x2=sec2y
∴ f ′ ( x ) = 1 1 + x 2 \therefore f'(x)=\frac{1}{1+x^2} ∴f′(x)=1+x21
高阶导数
定义
函数 y = f ( x ) y=f(x) y=f(x) 可导,则
- 二阶导数
若 f ( x ) f(x) f(x) 的一阶导数 f ′ ( x ) f'(x) f′(x) 可导,则 f ′ ( x ) f'(x) f′(x) 的导数记作 f ′ ′ ( x ) f''(x) f′′(x) 或 d d x ( d y d x ) = d 2 y d x \frac{d}{dx}(\frac{dy}{dx})=\frac{d^2y}{dx} dxd(dxdy)=dxd2y - 三阶导数
若 f ( x ) f(x) f(x) 的二阶导数 f ′ ′ ( x ) f''(x) f′′(x) 可导,则 f ′ ′ ( x ) f''(x) f′′(x) 的导数记作 f ′ ′ ′ ( x ) f'''(x) f′′′(x) 或 d 3 y d x \frac{d^3y}{dx} dxd3y - 四阶导数
若 f ( x ) f(x) f(x) 的三阶导数 f ′ ′ ′ ( x ) f'''(x) f′′′(x) 可导,则 f ′ ′ ′ ( x ) f'''(x) f′′′(x) 的导数记作 f ( 4 ) ( x ) f^{(4)}(x) f(4)(x) 或 d 4 y d x \frac{d^4y}{dx} dxd4y -
n
n
n 阶导数
若 f ( x ) f(x) f(x) 的 n − 1 n-1 n−1 阶导数 f ( n − 1 ) ( x ) f^{(n-1)}(x) f(n−1)(x) 可导,则 f ( n − 1 ) ( x ) f^{(n-1)}(x) f(n−1)(x) 的导数记作 f ( n ) ( x ) f^{(n)}(x) f(n)(x) 或 d n y d x \frac{d^ny}{dx} dxdny
莱布尼茨公式
函数
u
=
u
(
x
)
,
v
=
v
(
x
)
u=u(x),~v=v(x)
u=u(x), v=v(x) 则
(
u
v
)
(
n
)
=
u
(
n
)
v
+
n
u
(
n
−
1
)
v
′
+
n
(
n
−
1
)
2
!
u
(
n
−
2
)
v
′
′
+
⋯
+
n
(
n
−
1
)
⋯
(
n
−
k
+
1
)
k
!
u
(
n
−
k
)
v
(
k
)
+
⋯
+
u
v
(
n
)
=
∑
k
=
0
n
C
n
k
u
(
n
−
k
)
v
(
k
)
\begin{aligned} (uv)^{(n)}&=u^{(n)}v+nu^{(n-1)}v'+\frac{n(n-1)}{2!}u^{(n-2)}v''+\cdots+\frac{n(n-1)\cdots(n-k+1)}{k!}u^{(n-k)}v^{(k)}+\cdots+uv^{(n)}\\ &=\sum\limits_{k=0}^{n}C_n^ku^{(n-k)}v^{(k)} \end{aligned}
(uv)(n)=u(n)v+nu(n−1)v′+2!n(n−1)u(n−2)v′′+⋯+k!n(n−1)⋯(n−k+1)u(n−k)v(k)+⋯+uv(n)=k=0∑nCnku(n−k)v(k)
常见函数高阶导数
- ( sin x ) ( n ) = sin ( x + n ⋅ π 2 ) (\sin x)^{(n)}=\sin(x+n\cdot\frac{\pi}{2}) (sinx)(n)=sin(x+n⋅2π)
- ( cos x ) ( n ) = cos ( x + n ⋅ π 2 ) (\cos x)^{(n)}=\cos(x+n\cdot\frac{\pi}{2}) (cosx)(n)=cos(x+n⋅2π)
参考
[1] 高等数学同济大学数学系高等教育出版社上册