神经网络图文检索模型预测代码学习总结(二)

         本文主要用于积累自己学习过程中搭建神经网络的常见代码,如有不准确之处,欢迎各路大神指出!谢谢!

训练网络

optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
criterion = nn.NLLLoss()
  • optim.SGD ()用于优化神经网络,使得训练过程更快,节省训练时间,但需在括号中传入网络的各种参数。torch.optim是实现各种优化算法的包。lr即learning rate(学习率),.parameters()提供了网络的其他参数,比较方便。
  • nn.NLLLoss()是一种损失函数,其输入是图片分类后的得分向量,损失函数的结果越小,表示预测的越准确。
# 运行主训练循环
for epoch in range(epochs):
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = Variable(data), Variable(target)
        # 将数据大小从 (batch_size, 1, 28, 28) 变为 (batch_size, 28*28)
        data = data.view(-1, 28*28)
        optimizer.zero_grad()
        net_out = net(data)
        loss = criterion(net_out, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                           100. * batch_idx / len(train_loader), loss.data[0]))
  • 神经网络的训练通常用梯度下降法,如果训练数据过多, 无法一次性将所有数据送入计算(epoch),现将数据分成几个部分(batch)。
  • data, target = Variable(data), Variable(target)

        将data和target转换为PyTorch变量。本数据集的大小是(batch_size, 1, 28, 28),当从数据加载器中提取数据时,这个4D的张量更适合卷积神经网络,而不太适合我们的全连接网络。因此,我们需要将(1,28,28)数据平展为28 × 28 = 784个输入节点的单一维度

  •  data = data.view(-1, 28*28)

        .view()函数对PyTorch变量进行操作,以改变它们的形状。如果我们不知道给定维度的大小,我们可以在大小定义中使用“-1”。 

  • optimizer.zero_grad()

        使模型中的所有梯度归零(重置),以便为下一次反向传播做好准备。

  • net_out = net(data)

        将输入数据传入模型,实际上是调用Net类中的forward()方法,变量net_out保存神经网络的log softmax输出。

  • loss = criterion(net_out, target)

        criterion()是一种损失函数,用来计算神经网络输出和目标数据之间的负对数似然损失。

  • loss.backward()

        从损失变量通过神经网络进行反向传播操作。

  • optimizer.step()

        optimzier优化器原理:根据神经网络反向传播的梯度信息来更新网络的参数,以起到降低损失函数计算值的作用。优化器起到优化作用,首先需要知道当前的网络的参数空间,所以正式训练前需要将网络的参数传入优化器,即前面提到的optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9);另外需要知道反向传播的梯度信息,即前面提到的optimizer.step()。

  • if batch_idx % log_interval == 0:
        print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                        epoch, batch_idx * len(data), len(train_loader.dataset),
                               100. * batch_idx / len(train_loader), loss.data[0]))

        最后,当迭代达到一定次数时,我们打印出一些结果。

Train Epoch: 9 [52000/60000 (87%)] Loss: 0.015086
Train Epoch: 9 [52000/60000 (87%)] Loss: 0.015086
Train Epoch: 9 [54000/60000 (90%)] Loss: 0.030631
Train Epoch: 9 [56000/60000 (93%)] Loss: 0.052631
Train Epoch: 9 [58000/60000 (97%)] Loss: 0.052678

参考文章:

在PyTorch中创建神经网络(逐句解释代码) - 知乎 (zhihu.com)

(12条消息) pytorch nn.NLLLoss_Claroja的博客-CSDN博客

(12条消息) Pytorch optimizer.step() 和loss.backward()和scheduler.step()的关系与区别 (Pytorch 代码讲解)_xiaoxifei的博客-CSDN博客_scheduler.step()

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
# GPF ## 一、GPF(Graph Processing Flow):利用图神经网络处理问题的一般化流程 1、图节点预表示:利用NE框架,直接获得全图每个节点的Embedding; 2、正负样本采样:(1)单节点样本;(2)节点对样本; 3、抽取封闭子图:可做类化处理,建立一种通用图数据结构; 4、子图特征融合:预表示、节点特征、全局特征、边特征; 5、网络配置:可以是图输入、图输出的网络;也可以是图输入,分类/聚类结果输出的网络; 6、训练和测试; ## 二、主要文件: 1、graph.py:读入图数据; 2、embeddings.py:预表示学习; 3、sample.py:采样; 4、subgraphs.py/s2vGraph.py:抽取子图; 5、batchgraph.py:子图特征融合; 6、classifier.py:网络配置; 7、parameters.py/until.py:参数配置/帮助文件; ## 三、使用 1、在parameters.py中配置相关参数(可默认); 2、在example/文件夹中运行相应的案例文件--包括链接预测、节点状态预测; 以链接预测为例: ### 1、导入配置参数 ```from parameters import parser, cmd_embed, cmd_opt``` ### 2、参数转换 ``` args = parser.parse_args() args.cuda = not args.noCuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if args.hop != 'auto': args.hop = int(args.hop) if args.maxNodesPerHop is not None: args.maxNodesPerHop = int(args.maxNodesPerHop) ``` ### 3、读取数据 ``` g = graph.Graph() g.read_edgelist(filename=args.dataName, weighted=args.weighted, directed=args.directed) g.read_node_status(filename=args.labelName) ``` ### 4、获取全图节点的Embedding ``` embed_args = cmd_embed.parse_args() embeddings = embeddings.learn_embeddings(g, embed_args) node_information = embeddings #print node_information ``` ### 5、正负节点采样 ``` train, train_status, test, test_status = sample.sample_single(g, args.testRatio, max_train_num=args.maxTrainNum) ``` ### 6、抽取节点对的封闭子图 ``` net = until.nxG_to_mat(g) #print net train_graphs, test_graphs, max_n_label = subgraphs.singleSubgraphs(net, train, train_status, test, test_status, args.hop, args.maxNodesPerHop, node_information) print('# train: %d, # test: %d' % (len(train_graphs), len(test_graphs))) ``` ### 7、加载网络模型,并在classifier中配置相关参数 ``` cmd_args = cmd_opt.parse_args() cmd_args.feat_dim = max_n_label + 1 cmd_args.attr_dim = node_information.shape[1] cmd_args.latent_dim = [int(x) for x in cmd_args.latent_dim.split('-')] if len(cmd_args.latent_dim) == 1: cmd_args.latent_dim = cmd_args.latent_dim[0] model = classifier.Classifier(cmd_args) optimizer = optim.Adam(model.parameters(), lr=args.learningRate) ``` ### 8、训练和测试 ``` train_idxes = list(range(len(train_graphs))) best_loss = None for epoch in range(args.num_epochs): random.shuffle(train_idxes) model.train() avg_loss = loop_dataset(train_graphs, model, train_idxes, cmd_args.batch_size, optimizer=optimizer) print('\033[92maverage training of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m' % (epoch, avg_loss[0], avg_loss[1], avg_loss[2])) model.eval() test_loss = loop_dataset(test_graphs, model, list(range(len(test_graphs))), cmd_args.batch_size) print('\033[93maverage test of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m' % (epoch, test_loss[0], test_loss[1], test_loss[2])) ``` ### 9、运行结果 ``` average test of epoch 0: loss 0.62392 acc 0.71462 auc 0.72314 loss: 0.51711 acc: 0.80000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 10.09batch/s] average training of epoch 1: loss 0.54414 acc 0.76895 auc 0.77751 loss: 0.37699 acc: 0.79167: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 34.07batch/s] average test of epoch 1: loss 0.51981 acc 0.78538 auc 0.79709 loss: 0.43700 acc: 0.84000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.64batch/s] average training of epoch 2: loss 0.49896 acc 0.79184 auc 0.82246 loss: 0.63594 acc: 0.66667: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 2: loss 0.48979 acc 0.79481 auc 0.83416 loss: 0.57502 acc: 0.76000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.70batch/s] average training of epoch 3: loss 0.50005 acc 0.77447 auc 0.79622 loss: 0.38903 acc: 0.75000: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 34.03batch/s] average test of epoch 3: loss 0.41463 acc 0.81132 auc 0.86523 loss: 0.54336 acc: 0.76000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.57batch/s] average training of epoch 4: loss 0.44815 acc 0.81711 auc 0.84530 loss: 0.44784 acc: 0.70833: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 4: loss 0.48319 acc 0.81368 auc 0.84454 loss: 0.36999 acc: 0.88000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 10.17batch/s] average training of epoch 5: loss 0.39647 acc 0.84184 auc 0.89236 loss: 0.15548 acc: 0.95833: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 5: loss 0.30881 acc 0.89623 auc 0.95132 ```
卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,主要用于图像识别和计算机视觉任务。它通过模拟人类视觉系统的工作原理,从输入图像中提取特征并进行分类或回归。 CNN的核心思想是卷积操作和池化操作。卷积操作通过滑动一个小的窗口(卷积核)在输入图像上提取局部特征,这样可以保留空间结构信息。池化操作则用于降低特征图的维度,减少计算量,并且具有一定的平移不变性。 以下是卷积神经网络的基本结构和步骤: 1. 卷积层:卷积层是CNN的核心组成部分,它由多个卷积核组成。每个卷积核在输入图像上进行卷积操作,生成对应的特征图。每个特征图对应一个卷积核提取的特征。 2. 激活函数:在卷积层之后,通常会使用激活函数(如ReLU)对特征图进行非线性变换,增加网络的表达能力。 3. 池化层:池化层用于减小特征图的尺寸,并保留重要的特征。常用的池化操作有最大池化和平均池化。 4. 全连接层:全连接层将池化层输出的特征图展平成一维向量,并通过全连接层进行分类或回归。 5. 输出层:输出层根据任务的不同选择适当的激活函数,如softmax用于多分类问题,sigmoid用于二分类问题。 CNN的训练过程通常使用反向传播算法,通过最小化损失函数来更新网络参数。常用的优化算法有梯度下降法和Adam优化算法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值