数据处理
X表示糖尿病病人的8个特征,Y表示1年后他们的病情是否会加重
每一行是一个样本,每一列是该样本的一个特征,我们要把这个数据表转化为矩阵类型数据
修改原代码数据准备部分:输入的数据是8维,输出的数据是1维
空间变换
矩阵是一个空间变换的函数,可以将m维空间映射到n维空间上
神经网络的本质上是寻找一种非线性的空间变换函数,通过添加非线性的变换因子——激活函数,使其能够拟合非线性的函数,达到将多维空间降维/升维的目的
变换的纬度和隐藏层的层数决定了神经网络的复杂程度,但是具体的这里面的值取什么,需要用到超参数搜索,不一定是层数越多越好,一般来说,层数越多学习能力越强,但是这样会把本不属于样本的噪声学习到,所以学习能力太强也不好,要具有对真值的泛化学习能力。
该神经网络共3层;第一层是8维到6维的非线性空间变换,第二层是6维到4维的非线性空间变换,第三层是4维到1维的非线性空间变换。
代码讲解
- 准备数据
2.定义模型
3.构造损失函数和优化器
- 训练循环,注意这里没有用小批量学习
还有一些其他的激活函数可以试试
附代码
import numpy as np
import torch
import matplotlib.pyplot as plt
# 步骤一:prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1]) # 第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
y_data = torch.from_numpy(xy[:, [-1]]) # [-1] 最后得到的是个矩阵
# 步骤二:design model using class
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6) # 输入数据x的特征是8维,x有8个特征
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid() # 将其看作是网络的一层,而不是简单的函数使用
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x)) # y hat
return x
model = Model()
# 步骤三:construct loss and optimizer
# criterion = torch.nn.BCELoss(size_average = True)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
epoch_list = []
loss_list = []
# 步骤四:training cycle forward, backward, update
for epoch in range(1000):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss.item())
epoch_list.append(epoch)
loss_list.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()
如果想查看某些层的参数,以神经网络的第一层参数为例,可按照以下方法进行。
# 参数说明
# 第一层的参数:
layer1_weight = model.linear1.weight.data
layer1_bias = model.linear1.bias.data
print("layer1_weight", layer1_weight)
print("layer1_weight.shape", layer1_weight.shape)
print("layer1_bias", layer1_bias)
print("layer1_bias.shape", layer1_bias.shape)