数据处理
X表示糖尿病病人的8个特征,Y表示1年后他们的病情是否会加重
每一行是一个样本,每一列是该样本的一个特征,我们要把这个数据表转化为矩阵类型数据
修改原代码数据准备部分:输入的数据是8维,输出的数据是1维
空间变换
矩阵是一个空间变换的函数,可以将m维空间映射到n维空间上
神经网络的本质上是寻找一种非线性的空间变换函数,通过添加非线性的变换因子——激活函数,使其能够拟合非线性的函数,达到将多维空间降维/升维的目的
变换的纬度和隐藏层的层数决定了神经网络的复杂程度,但是具体的这里面的值取什么,需要用到超参数搜索,不一定是层数越多越好,一般来说,层数越多学习能力越强,但是这样会把本不属于样本的噪声学习到,所以学习能力太强也不好,要具有对真值的泛化学习能力。
该神经网络共3层;第一层是8维到6维的非线性空间变换,第二层是6维到4维的非线性空间变换,第三层是4维到1维的非线性空间变换。
代码讲解
- 准备数据
2.定义模型
3.构造损失函数和优化器
- 训练循环,注意这里没有用小批量学习
还有一些其他的激活函数可以试试
附代码
import numpy as np
import torch
import matplotlib.pyplot as plt
# 步骤一:prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=','